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ABSTRACT 
We present a system to perform spectral monitoring of a wide 
band of 666.5 MHz, located within a range of 6 GHz of Radio 
Frequency (RF) bandwidth, using state-of-the-art deep learning 
approaches. The system detects, labels, and localizes in time and 
frequency signals of interest (SOIs) against a background of 
wideband RF activity. We apply a hierarchical approach.  At the 
lower level we use a sweeping window to analyze a wideband 
spectrogram, which is input to a deep convolutional network that 
estimates local probabilities for the presence of SOIs for each 
position of the window. In a subsequent, higher-level processing 
step, these local frame probability estimates are integrated over 
larger two-dimensional regions that are hypothesized by a second 
neural network, a region proposal network, adapted from object 
localization in image processing. The integrated segmental 
probability scores are used to detect SOIs in the hypothesized 
spectro-temporal regions. 
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1    INTRODUCTION 
Deep neural network architectures [1], have in recent years 
produced large performance improvements in image and speech 

recognition compared with more traditional techniques [2, 3]. 
Instead of using carefully handcrafted features with elaborate 
statistical modeling, deep learning approaches take as their input 
raw two-dimensional images, or simple spectro-temporal 
representations of audio signals and process them through 
multiple layers of neural computation, such as convolutional, fully 
connected, and recurrent layers. Their internal representations can 
be interpreted as powerful feature extractors. Multiple layers 
progressively combine features and derive abstractions, achieving 
high robustness to input variability when large amounts of 
representative training data are used. 

Deep learning techniques have recently been applied in the RF 
domain [4, 5, 6]. Most of these systems deal with classifying the 
type of modulation of a single RF signal that has been located in 
frequency and shifted to the baseband. 

In this paper we address the challenging problem of detection, 
identification, and localization in time and frequency of multiple 
SOIs in a background of RF activity that may include many other 
signals in a very wide band of 666.5 MHz, located anywhere 
between 0.5 and 6 GHz. This problem is part of the Spectrum 
Awareness task in the DARPA Radio Frequency Machine 
Learning Systems (RFMLS) program [7].  

Current software-defined radios (SDRs) allow the digitization of 
over 600 MHz of RF bandwidth anywhere in the RF spectrum up 
to several GHz. One of the challenges in applying machine 
learning (ML) approaches to detection of a variety of RF signals 
is the huge range of bandwidths and durations across different 
signal types. This range exceeds four orders of magnitude, and no 
similar range across different signals or images is found in 
machine learning applications in speech or video. Other challenge 
is the large number of samples in digitized RF signals in a wide 
spectral band: with a sampling rate of 666.5 MHz, each second of 
RF IQ signals requires over 2.6 GB of storage. Thus, the 
processing pipeline must handle massive data quantities. 

2    SYSTEM DESCRIPTION 
Given the IQ output of the SDR the first step is to compute a high-
resolution spectrogram of the 666.5 MHz bandwidth of interest. 
This spectrogram can be thought of as a two-dimensional “image” 
with frequency along one axis and time along the other. In this 
two-dimensional representation, signals can appear at any 
frequency location and bandwidth, and in any time interval. 
Without loss of generality, and for practical reasons, the 
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continuous IQ output stream from the SDR is divided into 
segments of approximately 0.75 seconds duration. Each segment 
corresponds to ~500 million complex samples, or ~2 GB. 

To generate the input signal spectrogram, we compute a sequence 
of non-overlapping 16K-point FFTs, apply a temporal Blackman 
window, obtain the power spectrum, and average N successive 
power spectra to reduce the feature dimensionality and reduce the 
variance of the power spectrum estimate. Finally, the log of the 
power spectrum is used for the spectrogram representation. With 
N = 2 the size of the spectrogram image is 16,384 bins in the 
frequency dimension and 15,360 log-power spectral frames in the 
time dimension. The resulting spectrogram “image” has over 250 
million pixels.  

The dimension of the spectrogram is too large to process with a 
single network of reasonable dimensions. We apply a hierarchical 
approach where at the lower level we analyze the spectrogram 
using a sweeping spectro-temporal window, or spectrogram 
frame. The spectrogram frame is input to a deep convolutional 
network that computes local probability estimates for the presence 
of SOIs within each frame. In a subsequent, higher-level stage, 
these local frame probability estimates are integrated over larger 
two-dimensional regions, or “bounding boxes”, that are 
hypothesized by a second neural network: a “region proposal 
network” [8, 9]. Using the spectrogram frames within the 
bounding boxes we can obtain two-dimensional segmental 
probability scores for the presence of SOIs over a spectro-
temporal range greater than a single frame. This approach allows 
the modeling of complex spectro-temporal behavior of signals that 
present wide frequency excursions and extended temporal activity 
patterns. The SOI segmental probability scores are used to detect 
the presence of SOIs. To estimate the frequency location for some 
very narrowband SOIs we introduced an optional processing step 
to refine the bounding boxes within the frames’ bandwidth. A 
block diagram of the complete system is shown in Fig. 1. 

2.1  SOI frame probability estimator 
In this section we describe the feature extraction and the deep 
neural network (DNN) that computes frame-level SOI probability 
estimates. The input to this network is obtained by dividing the 
input spectrogram into frames of 256 by 256 bins in the frequency 
and time domains respectively; these frames overlap by 50% on 
the frequency dimension. The frames have a bandwidth of ~10.4 
MHz and a duration of 12.6 msec. For each spectrogram frame, 
the DNN estimates a set of posterior probabilities for the presence 
of each SOI within that frame. We use a state-of-the-art deep 

convolutional neural network (DCNN) to estimate the SOI 
posterior probabilities, as well as a background signal class. The 
frame duration  allows the network to capture temporal structure 
that a signal may show within the frame, while longer time 
structure is captured by the subsequent higher-level processing. 

While the frequency bandwidth of ~10 MHz allows capture of a 
large number of signals, to better capture the structure of wider 
band signals we derive a multiscale representation from the same 
input spectrogram. By iteratively integrating across adjacent 
power spectral bins, we generate input frames with 2, 4, and 8 
times the bandwidth of the basic frame while keeping the same 
256 by 256 dimensionality for these wider-band frames. The 
bandwidths of the multiscale frames are 20.81, 41.62, and 83.25 
MHz, respectively.  

Frames corresponding to every bandwidth are input to different 
DCNNs, one for each bandwidth. The outputs of these nets are 
combined by averaging their values across all bandwidths, for 
every frame location, for each SOI. These combinations are done 
at the finest, 10.4 MHz, level of resolution. The aim of this output 
combination is to obtain a more robust estimate of the posterior 
probabilities for each SOI class across a range of bandwidths for 
every spectro-temporal frame.  

We can consider the output of this first processing stage as 
converting the very large two-dimensional input spectrogram (of 
250 million pixels) into a much smaller three-dimensional 
“posteriogram” (with ~84K elements at 50% frame overlap in 
frequency) that contains for every frame position, indexed by time 
and frequency location, a set of M smoothed posterior 
probabilities. The output of the “frame posterior estimator” is a 
tensor with 127 columns along the frequency dimension, 60 rows 
across the temporal dimension, and a third dimension with M = 11 
values of posterior probabilities, corresponding to the set of 10 
SOIs plus a background class, for each spectro-temporal cell 
position.  

The architecture of the frame posterior estimation network, 
depicted in Fig. 2, is an extension of the 50-layer Residual 
Network (ResNet) proposed by He et al. [10, 11], including the 
architectural improvements reported in [12].  To reduce the input 
dimensionality, we added three initial convolutional layers, with 
32, 32, and 64 convolution filters each, using 3x3 kernels, and 2x2 
max pooling between layers. These are followed by four stages of 
residual blocks with 3, 4, 6 and 3 blocks each. At the end of every 
stage the feature maps' spatial dimension is halved and the 
number of features extractors is doubled, resulting in 64, 128, 256, 

Figure 1: Block diagram of the proposed architecture for wideband spectral monitoring 
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and 512 feature maps respectively. That is followed by a Global 
Average Pooling (GAP) layer, pooling over spatial dimensions by 
averaging, and again by maxing. The GAP output of 512+512 
units is followed by two fully connected layers of 512 units and a 
softmax output layer with 11 outputs. 

This extended ResNet was trained from scratch on generated RF 
data. The training data size was ~1.27 million feature frames with 
SOIs randomly located within each frame. The training frames 
were extracted from wideband spectrograms obtained from 
generated wideband IQ data using real RF noisy backgrounds. 
The training data was selected to balance class priors before 
training. We doubled the training data size by on-the-fly data 
augmentation: we used random crops, frequency shifts, and added 
mix-up augmentation by weighted combinations (0.9, 0.1) of 
feature frames, which adds robustness to RF signal collisions. 
Four different networks were trained corresponding to each of the 
four frame bandwidths. Average classification accuracy for ten 
SOIs (from Table 1) plus background, on the noisy validation set, 
described in Section 4, was ~75.%. 

2.2  Bounding box estimation and detection score 
computation 

The following, higher-level, processing stage takes the 
posteriograms generated by the frame probability estimator 
ResNet, consisting of smoothed posterior probabilities for every 
SOI and every frame, and uses them to hypothesize a “bounding 
box”, across a rectangular set of frames, for every potential SOI 
detection. This rectangular bounding box per SOI potential 
detection is aimed to capture a “human-level” interpretation of the 
spread of an RF signal along the spectral and temporal 
dimensions, and is part of the information provided by the spectral 
monitoring system after detection of an SOI.  

Recent advances in image processing have successfully tackled 
the problem of bounding box estimation for objects present in a 
two-dimensional image. These systems, such as the Mask R-CNN 
[8], have been trained with millions of labeled and segmented 
images, and achieve very accurate object detection and bounding 
box estimation performance on standard image datasets. These 
systems, and their corresponding trained models, are publicly 
available [9], and are known to be adaptable to new tasks, by only 
re-training a small subset of the parameters of their deep neural 
networks.  The re-training is done using a much smaller data set 
than was originally used to train the entirety of the deep neural 
network.  

This limited re-training for a new task, referred to as transfer 
learning, is known to be effective in dealing with new types of 
objects in pictures. We apply this concept of transfer learning to 
bounding box estimation for SOIs in an RGB “image” derived 
from the posteriogram representation. 

To allow transfer learning for the Mask R-CNN from image 
processing to posteriogram processing, we derive a three-channel 
image from the three-dimensional posteriogram by marginalizing 
the M posterior probabilities for each frame over three sets of SOI 
classes: wideband, narrowband, and background. In this way the 
marginalized posteriogram can be considered as a three-channel 
image with 127 pixels along the frequency axis (using 50% frame 
overlap) and 60 pixels along the time axis. This derived image is 
processed by the Mask R-CNN to estimate candidate bounding 
boxes for SOIs present in each 0.75-sec RF signal segment.  

The resolution of the bounding box estimate is limited by the size 
of the spectro-temporal frames, 10.4 MHz in frequency and 12.6 
msec. in time. This level of resolution is sufficient for detection 
and location of a large number of SOIs with reasonable 
approximation. For the few SOIs that require greater resolution to 
precisely locate them in the spectro-temporal space, like 
narrowband signals for voice communications, we have 
implemented a complementary segmentation processing that 
locates such signals within the spectrogram frames.  

The Mask R-CNN also produces a score representing the 
goodness of match of the input data within the bounding box to 
the re-trained Mask R-CNN model. This score is combined with 
the SOI frame posterior scores within the bounding box to 
produce a segmental score for each SOI hypothesis within each 
bounding box hypothesis. To detect an SOI, its segmental score is 
compared with a calibrated threshold that is specific to each SOI, 
and a positive detection occurs when the score is above the 
threshold. We choose a threshold per SOI to obtain a desired 
tradeoff between false alarms and correct detections. To 
determine the thresholds, we plot ROC curves by sweeping the 
threshold over a range of values and pick the desired operating 
point in a development data set.  

The Mask R-CNN architecture is summarized here following [8]: 
It has three main components: i) a convolutional backbone (a 
ResNet), ii) a Region Proposal Network, and iii) Bounding Box 
Regression and Classification heads. The convolutional backbone 
is a ResNet pretrained on the ImageNet database (1K classes, ~14 
million frames) to do object classification. The system produces 
as output the feature maps from several layers with different 

Figure 2: Frame Posterior Network architecture, based on ResNet 50 with added input convolutional layers, a GAP layer, and 
two fully connected layers to the softmax output layer 
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resolutions and information. The Region Proposal Network 
component also uses convolutional layers that find candidate SOI 
bounding boxes. Each candidate region selects feature subsets 
from the backbone feature maps and transforms them into a 
uniform shape (7x7) feature map. Finally, the classification and 
regressions heads process the potential regions to do final object 
classifications and produce bounding box coordinates, as well as a 
pixel-level mask for the detected object. Using as ground truth the 
known bounding boxes from our inserted SOIs we trained only 
the last layers: the region proposal network, the regression net, 
and the mask net. The pre-trained backbone convolutional net was 
fixed. About ~8000 RGB images were used for re-training, 
obtained from the posteriograms computed from all available 
wideband training data (with size 16 TB) by the frame posterior 
estimation networks. 

The segmental score for an SOI hypothesis was computed as a 
weighted combination of two components: 1) the sum of the 
frame log-probabilities for the SOI class over all frames in the 
bounding box, and 2) the corresponding SOI detection score from 
the Mask R-CNN classification layer. The first component 
captures a robust segmental probability score for the SOI class, 
while the second component represents the level of match of the 
image to the patterns learned by the Mask R-CNN for that SOI. 

 

Figure 2: Top: Spectrogram showing drone RF activity, 
Bottom: Posteriogram slice for drone class, and estimated SOI 
detection bounding box 

In Fig. 3 we show an example of segmental detection for a drone 
SOI. The top pane shows an input wideband spectrogram of 0.75 
sec. duration and 666.5 MHz bandwidth. At left of center we can 
see a drone signal (UAS) with a periodic wideband pattern of RF 
activity, moving downward in frequency.  In the second pane we 
show one “slice” of the posteriogram tensor for the class UAS 
(drone). We can clearly see the yellow downward stripes 
associated with the drone activity at the center left. Note that there 

are other regions that show similar probability values for signals 
that are not drones (vertical yellow lines in the right half of the 
middle pane). We also show the estimated bounding box for the 
detected drone SOI. Despite some high probability frames for the 
drone class on the right side, the time-frequency pattern structure 
of that RF activity does not match the “image” patterns for drones 
learned by the Mask R-CNN. Note that the background signals on 
the right side in the first pane are much stronger than the inserted 
drone signal. This is a typical case, as our insertions have positive 
signal to noise ratio (SNR) only with respect to the background 
noise floor. 

To refine the estimate of bounding boxes for very narrowband 
signals, we implemented an optional processing stage that uses an 
image segmentation approach to locate SOI activity within the 
frames that intersect the low-resolution bounding box edges 
obtained from the posteriogram-derived image by the previous 
stage. Our image segmentation approach was based on the SegNet 
architecture [13] and consists of an encoder-decoder DNN with 
500K trainable parameters. The output of the SegNet has the same 
dimensions as the input frame, with each pixel classified as the 
highest scoring class. We define the area of detection by selecting 
the largest contiguous area corresponding to the SOI detected in 
the analyzed frame. We trained the SegNet from scratch using 
internally generated data. We used 1.2 million training frames 
leveraging the existing training set for the frame posterior 
estimation net. The high-resolution annotations from an energy 
detector were used to generate target class labels for every pixel. 
Having obtained the regions of activity within each frame in the 
bounding box edges, we simply adjusted the overall SOI bounding 
box location according to the finer level of detail of SOI activity 
within the frames provided by the SegNet. 

3   DATA GENERATION AND MODEL 
TRAINING 
In the field of speech recognition there has been a long research 
effort to build models with robustness to background noise, 
channel conditions, and signal variability.  The combination of 
multi-condition (MC) training and deep neural network models 
has been shown to be highly effective, and to have similar 
performance to other, more complicated, state-of-the-art 
approaches [14].  We apply and extend MC training to RF signals 
to train robust models in the RF domain by generating training 
data with considerable variability in several dimensions: i) 
multiple examples of each SOI, representing different signal 
behaviors, ii) examples of a range of signal-to-noise ratios, iii) 
examples with multiple SOI locations in time and frequency 
within the wideband spectrogram and within the spectrogram 
frames, iv) examples against different backgrounds and at 
different locations within the backgrounds. 

The RFMLS program evaluation and development data was 
produced by a synthetic data generation process. The RFMLS 
program provided wideband recordings of multiple RF 
background environments: rural, urban, and operational. The 
length of each background environment recording was 120 
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seconds. To keep IQ files within manageable sizes, each 
background recording was segmented into 0.75-sec segments. The 
RFMLS program also provided baseband recordings of multiple 
signals (the potential SOIs) recorded over the air or over a wire. 
Development and evaluation RF signals were then created by 
inserting SOIs at specified times and frequencies over the given 
backgrounds, at specified SNRs with respect to the noise floor of 
the backgrounds. In Table 1 we show a list of the types of signals 
inserted, and the average bandwidth estimated by the energy 
detector as well as the typical bandwidth per channel. 

The SOI insertions were implemented by first upsampling the 
baseband SOIs to the 666.5 MHz sampling rate of the wideband 
backgrounds, and then frequency-shifting the SOIs to the desired 
center frequencies. The specified SNRs were used to determine 
the amplitude of each inserted SOI.  

We also generated a large amount of synthetic RF data to train the 
ML models. The training data was generated to produce a wide 
range of variability in terms of SOI samples, insertion locations, 
insertion SNRs, and background recordings. On average, 500 
samples with SOIs were created and inserted in each 120 sec 
background.  The SNRs of the SOI insertions ranged from 5 to 25 
dB. When inserting SOI’s we aimed to avoid overlap with 
preexisting signal activity in the recorded backgrounds. 

We generated a total of 50 different training environments of 120 
seconds each. The total generated IQ training data amounted to 
~16 terabytes. From this training data set we extracted 1.27 
million feature frames across all SOIs insertions to train the 
ResNet frame posterior probability estimators.  To train the Mask 
R-CNN for bounding box estimation we generated ~8000 RGB 
images from the posteriograms derived from all the training data. 
Each training RGB image of 127 by 60 pixels comes from a 0.75-
sec segment of IQ data, 2GB in size. There are relatively few 
training images, as they are very expensive to obtain, but as the 
Mask R-CNN is pre-trained, this data is only used to re-train a 
subset of its parameters. 

In addition to SOI class labels, the evaluation and training data 
should include the locations, in terms of bounding boxes, of each 
SOI in time and frequency. This information was created, for each 
SOI sample, from the original baseband clean versions of the 
SOIs before insertion in the backgrounds. We used an energy 
detector software customized for each type of SOI that was 
provided to the RFMLS performers. This software produced two 
types of annotations per signal: 1) high-resolution annotations 
indicating where there is SOI energy, and 2) overall activity 
bounding box annotations surrounding the detailed activity for 
each SOI baseband recording. Both types of annotations were 
translated in frequency and time when an SOI was frequency 
shifted and inserted into a background. The high-resolution 
annotations were used to provide class labels for the SOIs within 
each training frame for the frame posterior estimation networks, 
and also used to train the bounding box refinement SegNet, while 
the overall activity bounding boxes were used to train the Mask 
R-CNN to predict the SOI bounding boxes. 

Table 1: Signals inserted as potential SOIs 

 

4   EXPERIMENTAL RESULTS 
In initial testing and optimization of the SOI detection approach, 
we defined the thresholds for detection of each class of SOI on a 
development set consisting of a 120-sec background segment 
where we inserted 423 SOIs using SNRs between 5 and 25 dB. 

The evaluation sets were constructed by inserting specified signals 
at 10 dB SNR using a different background of 120 sec that was 
not used for generating training data. Tables 2 through 5 present 
the SOI detection performance for four RF evaluation 
environments with different signal insertion densities. Two full 
segments of 120 sec from each of the four RF environments were 
generated. The second and third RF environments are 
progressively more crowded with additional signals, and 
consequently more challenging. The fourth environment is closer 
to the first one in complexity, and shows results for other SOIs.  

A detection, consisting of an SOI label and the associated 
bounding box, was considered to be correct if the area of the 
intersection between the ground truth bounding box and the 
detected bounding box, divided by the area of the detected 
bounding box, exceeded 50%.  

We show performance results, as percent of correct detections and 
of false alarms, for a subset of the signals inserted into the 
backgrounds: DECT, Bluetooth (BT), ATSC, LTE, and drones 
(UAS) in the first and second environment; in the third test 
environment LTE is replaced by Vulos. In the fourth test 
environment we added ADSB and WiFi as new SOIs, keeping 
LTE, BT and UAS. The remaining inserted signals are considered 
distractors for these evaluations.  We obtained very good 
detection performance for BT of 84% to 98% in all environments, 
and quite good (75% to 100%) for drones in all but one test set 
(51%).  Performance for DECT was reasonably good, at above 
70% detection, while the detection performance for ATSC was 
marginally acceptable at around 50%. For ATSC it seems the 
lower accuracy is due to poor performance of the energy detector 
in generating training bounding boxes. For LTE our development 
performance was much better than what we see in Environments 1 
and 2. It seems there was a mismatch with those evaluation sets 
due to the use of some level of filtering that was not present in the 
training data. That was fixed in Env. 4, were we got 70% and 85% 
detection rates. Vulos is a very narrowband signal, and the only 
one in the evaluation set that required the additional SegNet 
processing to refine the bounding boxes. While the bounding box 

Fig 3: sndfkasdf asdf akjasd kjasd akjldhf lkajsd 
ashjdf alkdjs fasd jkas dflkjas dklasdflkjasdflk 
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refinement allowed a certain level of detection for this class of 
signals, the detection performance was poorer than for the other 
SOIs. WiFi showed very good detection performance at 92% and 
89%. ADSB detection performance was also very good, but with a 
higher FA rate than on other signals. 

 Table 2: Detection performance in Environment 1 
  DECT BT ATSC LTE UAS 
Env. 1 
Seg. 1 

Det % 76 88 50 50 100 
FA % 49 21 51 63 39 

Env. 1 
Seg. 2 

Det % 72 92 48 54 96 
FA % 38 19 59 60 27 

Table 3: Detection performance in Environment 2 
  DECT BT ATSC LTE UAS 
Env. 2 
Seg. 1 

Det % 71 87 44 57 82 
FA % 39 7 57 61 44 

Env. 2 
Seg. 2 

Det % 82 98 53 41 51 
FA % 32 14 46 69 41 

Table 4: Detection performance in Environment 3 
  DECT BT ATSC Vulos UAS 
Env. 3 
Seg. 1 

Det % 72 84 49 35 84 
FA % 27 3 50 50 47 

Env. 3 
Seg. 2 

Det % 70 89 51 28 80 
FA % 33 23 58 61 38 

Table 5: Detection performance in Environment 4 
  ADSB BT WIFI LTE UAS 
Env. 4 
Seg. 1 

Det % 97 89 92 70 83 
FA % 58 20 30 30 38 

Env. 4 
Seg. 2 

Det % 100 86 89 85 75 
FA % 42 20 35 6 28 

 

5   CONCLUSION 
We have presented a system for wideband spectral monitoring, i.e. 
detection of SOIs, in a 666.5 MHz-wide signal. We proposed an 
architecture to deal with the extremely large range of signal 
bandwidths and durations, as well as the data processing 
capabilities required to handle signals at the required sampling 
rate. We incorporated state-of-the-art deep learning techniques 
inspired by image processing, and segmental scoring techniques 
inspired by speech processing that were extended to the two-
dimensional spectro-temporal space where RF signals are 
represented.  

Large amounts of synthetic MC training data were generated to 
introduce variability across multiple dimensions like signal 
variability, signal location, SNR, and background environments. 
This variability in the training data improves robustness along 
those dimensions in the learned models. Evaluating on synthetic 
data generated on top of real recorded RF backgrounds, the 
system detected elaborate wideband signals with high accuracy, 
by capturing the large-scale spectro-temporal patterns of SOIs 
such as drones, Bluetooth and WiFi. 

The proposed architecture was able to capture a range of RF 
activity across multiple temporal and frequency scales using a 

hierarchical processing approach and segmental scoring to 
produce robust detections, and offered a degree of robustness to 
false alarms in the presence of significant background RF activity. 
While we see many areas for further improvement, like dealing 
with lower SNRs., using a more sophisticated front end that use 
phase information, and achieving better narrowband detection 
performance, the proposed system was aimed to establish an 
initial framework for wideband SOI detection, that would be 
further improved in future work. In its current form it showed 
good performance for several types of elaborate signals and 
represents a promising approach to the wideband spectral 
monitoring problem using state-of-the-art deep learning 
approaches. 
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