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ABSTRACT
Intrusion Detection Systems (IDS) are increasingly adopting ma-
chine learning (ML)-based approaches to detect threats in com-
puter networks due to their ability to learn underlying threat pat-
terns/features. However, ML-based models are susceptible to ad-
versarial attacks, attacks wherein slight perturbations of the input
features, cause misclassifications. We propose a method that uses
active learning and generative adversarial networks to evaluate
the threat of adversarial attacks on ML-based IDS. Existing adver-
sarial attack methods require a large amount of training data or
assume knowledge of the IDSmodel itself (e.g., loss function), which
may not be possible in real-world settings. Our method overcomes
these limitations by demonstrating the ability to compromise an
IDS using limited training data and assuming no prior knowledge
of the IDS model other than its binary classification (i.e., benign
or malicious). Experimental results demonstrate the ability of our
proposed model to achieve a 98.86% success rate in bypassing the
IDS model using only 25 labeled data points during model training.
The knowledge gained by compromising the ML-based IDS, can be
integrated into the IDS in order to enhance its robustness against
similar ML-based adversarial attacks.
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1 INTRODUCTION
Intrusion Detection Systems (IDS) play an essential role in defend-
ing computer networks against malware attacks. Among the var-
ious approaches for anomaly-based intrusion detection, Machine
Learning(ML) algorithms have gained increasing attention due to
their advantage in detecting zero-day attacks [10]. Moreover, the
fast-developing software-defined networks with programmable
controllers have provided a convenient platform to implement the
ML-based IDS [23]. Various ML models, including support vector
machine [25], decision tree [6], k-NN [11], naive Bayes [8] and arti-
ficial neural networks [9] have been applied to intrusion detection.
In general, these ML methods can be considered as a classifier for
anomaly detection.

The development of IDS is accompanied by the evolution of
malware and intrusion strategies. In particular, an alarming direc-
tion appears in malware evolution which is the development of
self-adaptive malware that is capable of adjusting its behavior to
avoid detection by a security mechanism. Wu et al. [26] proposes
a deep Q-learning method to bypass botnet detection models by
controlling the network traffic flow generated by the botnets. Shi
et al. [22] use Generative Adversarial Networks (GAN) to synthe-
size training data for exploratory attacks and causative attacks
on a real online classifer for text subjectivity analysis. Erpek et
al. [3] propose a method for efficient jamming attacks on wireless
communication channels which uses a deep neural network model
to predict the channel status and a GAN model to accelerate the
prediction model training. GANs are used in [20] to modify the
network traffic in the Command and Control (C2) channel of a Re-
mote Access Trojan malware such that the modified traffic mimics
the traffic profile of Facebook chat. Lin et al. [13] also proposes a
GAN-based method where the generator computes the adversarial
network traffic features to attack a Black-box IDS model. The dif-
ferent methods proposed in [26], [20] and [13] can be grouped to a
special class of attack named the adversarial attack which targets
the ML-based IDS models.

Adversarial attack refers to an action of (intentionally) incurring
classification error of a ML algorithm by perturbing the value of its
input feature point. The perturbed feature, named the adversarial
feature or the adversarial example, is close to the original feature in
terms of considered distance metrics (e.g., Euclidean distance). An
adversarial attack algorithm can be used to compute the adversarial
feature of a malicious network traffic flow. Once the value of an
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adversarial feature is found, the malware can adjust the way it gen-
erates the network traffic flow to meet the computed value, such
that the IDS will classify the adjusted traffic flow as benign traf-
fic. The small magnitude of the feature value perturbation allows
the malware to have a high chance in retaining its intrusive func-
tionality. A detailed review of adversarial attacks against intrusion
detection can be found in [14].

Although the methods proposed in [26], [20] and [13] have
shown effectiveness in compromising a ML-based IDS model, their
threat in actual network environments are limited due to the ideal
assumptions that a large amount of data labels for training is avail-
able, and that the prior knowledge about the IDS model loss func-
tion is known. To assess whether an adversarial attack against IDS
can pose a larger threat to network security if these ideal assump-
tions are removed, we propose a method, named the Generative
Adversarial Active Learning (Gen-AAL) algorithm, to compute the
adversarial feature of network traffic flow. Our proposed method
makes the following contributions.
• We propose a GAN model which constrains the perturbation
to the original feature.
• Our proposed method does not require the knowledge of the
internal structure of the IDS model or the loss function for
IDS model training, and hence is a more practical method
for adversarial attack.
• Our method reduces the required number of times to query
the black-box IDS model for labeled data points to train the
GAN model, which increases the efficiency of GAN training
and the generation of adversarial feature points.

The rest this paper is organized as follows. Section 2 provides
a review of the literature mostly related to this work. Section 3
introduces the procedure of adversarial attack using the proposed
method. Section 4 shows the experimental result. Conclusion and
future work are discussed in Section 5.

2 BACKGROUND
2.1 Malware Threats to Computer Networks
In computer networks, malware (e.g., a botnet) can establish a Com-
mand and Control (C2) channel between the attacker and the victim
computers and use it to acquire remote access to the victim com-
puter [19]. Malware using the C2 channel mostly target personal
computers, but has started to attack mobile devices as well since
2010 [15]. A typical example of such malware for mobile devices is
Plankton [28], which is included in host apps via an added back-
ground service. Once the infected app runs, the background service
will start to collect information, such as the device ID and the list of
granted permissions, which will be used by the attacker [7]. Other
examples of malware spreading through wireless communication
channels include Cabir, a wormmalware for Symbian operating sys-
tem that spreads via bluetooth, and Spitmo, a Trojan horse malware
running on Andriod operating system which steals information
from the infected smartphones and uploads the information to a
remote server [15].

To hide the malware network traffic in C2 channel from an IDS,
the methods proposed in [26], [20] and [13] train a ML model to
learn the pattern of benign network traffic features and make the
malware network traffic features mimic the benign features. The

Figure 1: The overall structure of the GAN model.

reinforcement learning agent in [26] is trained on 40,000 flows,
where each flow yields an adversarial example to be sent to the
IDS model for labeling (‘benign’ or ‘malicious’). Similarly, the GAN
model from [13] is trained for 100 epochs on the NSL-KDD dataset
which consists of 1,074,992 distinct data samples. Such training
process requires the IDS model to produce a large amount of labels
for the generated adversarial features. In practice, the action of
sending a large amount of adversarial traffic flows to an IDS for
labeling could be identified as a suspicious activity and trigger
blocking or other countermeasures from security systems which
will interrupt the GAN training [1]. The work in [20] addresses
this issue by setting up a five-minute time window for the actual
IDS to collect generated traffic flow. However, this time window is
used as a known parameter in the malware configuration, which is
a condition that does not generally hold in practice since the time
window is a part of the internal mechanism of an IDS. Another ideal
condition required by [13] is that the loss function of the IDS model
is known, since the IDS loss function value is used in calculating the
GAN model loss. In a practical situation, however, it is not realistic
to assume that the attacker has knowledge of the loss function
used to train the IDS model. To remove the aforementioned ideal
assumptions, we introduce a substitute IDS model to approximate
the original IDS model, and propose an active learning algorithm
to reduce the number of labels required for ML model training.

2.2 Active Learning
In supervised learning for classification, a ML model is trained with
a labeled training dataset to estimate a mathematical mapping from
a feature point to a target label. In cases where it is expensive or
difficult to obtain the data labels, only a small number of labeled data
points are available for model training, and the model performance
is likely to suffer from the deficiency of training data [27]. One
possible solution to address the issue of limited training data, as
shown in [22], is to augment the original training dataset with
synthesized data points produced by a generative neural network
model. Another solution to maintain model performance under
limited training data is active learning. Active learning is a family
of methods which optimizes the process of training data collection
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in order to build a training dataset with minimal size which still
yields an adequate performance [15]. An active learning method is
typically an iterative process that alternates between training the
ML model (e.g., a classifier) and augmenting the current training
dataset with new labeled data points from the oracle (e.g., a human
annotator or a ML model). The process is typically initialized with a
small training dataset and a large pool of unlabeled feature points. In
each iteration, a set of feature points are selected from the unlabeled
pool and sent to the oracle for labeling. The strategy to select these
unlabeled feature points from the unlabeled pool is an important
problem to solve in active learning.

Uncertainty selection [12] is a strategy to select feature points
with the lowest confidence of the classifier. The level of uncertainty
can be represented by the distance of a feature point to the decision
boundary of the classifier. The active learning methods that rely
on uncertainty selection measured by the distance to the decision
boundary is named the margin-based active learning. Ducoffe et
al. [2] propose a margin-based method named the DeepFool Ad-
versarial Learning (DFAL) which selects unlabeled samples with
the smallest adversarial perturbation. The adversarial perturbation
is computed by an iterative process named DeepFool [17]. DFAL
achieves the state-of-the-art performance in terms of fast conver-
gence in convolutional neural network models and is used as a
main reference to develop our proposed method.

3 METHOD
The adversarial attack problem presented in this work is formally
described as follows. Given a black-box IDS model with unknown
loss function which is able to classify a feature point 𝑥 into the
correct category (‘benign’ or ‘malicious’), develop a ML model 𝐺
that takes 𝑥 as input and returns an adversarial feature point 𝑥 that
alters the classification result of the IDS. A solution to this problem
should satisfy the following two practical constraints: (1) the pertur-
bation, defined as 𝜂 := ∥𝑥 −𝑥 ∥2, should be minimized, (2) the size of
the labeled dataset L to train the ML model𝐺 should be minimized.
The motivation for the first constraint is that by minimizing the
distance between the original feature point and the adversarial fea-
ture points, we can increase the challenge for classification and the
probability of retaining the malware’s functionality. The motivation
for the second constraint is that reducing the required labels for
training will reduce the number of adversarial traffic flows sent to
the black-box IDS model and thus will reduce the probability that
the malware is detected.

To solve this problem, we propose the Gen-AAL algoirthm, which
uses a GAN model and an active learning algorithm to compute
adversarial attacks against an IDS model. The upper subplot of Fig.
1 shows the overall structure of the GAN model during training
in Gen-AAL algorithm. The GAN model consists of a generator
network and a discriminator network. The generator network is a
Variational AutoEcoder (VAE)model comprising an encodermodule
and a decoder module. It takes a feature point 𝑥 as input and outputs
an adversarial feature point 𝑥 . The reason we choose an VAE model
for the generator is that the symmetric architecture of the encoder
and the decoder provides a dimension-preserving mapping from 𝑥

to 𝑥 . The discriminator network is a Multi-Layer Perceptron (MLP)
model that simulates the black-box IDS and is therefore named

the Substitute-IDS (S-IDS) model. The S-IDS takes 𝑥 as input and
outputs a probability 𝑝 which indicates how likely the input feature
point is benign. In model test, the S-IDS is replaced by the original
black-box IDS model, which outputs a binary label 𝑦 indicating
whether 𝑥 is benign or malicious, as shown in the lower subplot
of Fig. 1. Since the objective of adversarial attack is to make the
IDS mistakenly label the malicious feature as benign, the target
label, denoted as 𝑦∗, is always set as ’benign’. The motivation for
introducing the S-IDS model is to avoid a large number of times
the IDS model is used during GAN training. Instead of using the
IDS model to classify an adversarial feature, the S-IDS model is
used to label an adversarial feature. The iterative process of active
learning ensures that the S-IDS model approximates the true IDS
model with a sufficient accuracy.

The objective of GAN training is to minimize the difference
between 𝑦 and 𝑦∗ as well as the difference between 𝑥 and 𝑥 . To
achieve this objective, we define the following loss function to train
the GAN model.

𝑓GAN =𝜆1𝐷𝐾𝐿 (𝑝 (𝑧), 𝑞(𝑧 |𝑥)) + 𝜆2∥𝑥 − 𝑥 ∥2 + 𝜆3𝐸 (𝑥, 𝑥)
+ 𝜆4𝐸 (𝑦,𝑦∗)

(1)

where 𝐷𝐾𝐿 (·) is the Kullback–Leibler divergence, 𝑧 is the output of
the VAE encoder (the latent variable), 𝑝 , 𝑞 are the distributions of
the prior and the encoder’s output respectively, 𝐸 (·) is the binary
cross entropy function, 𝑦 is the label of 𝑥 assigned by S-IDS, and 𝑦∗
is the target label for adversarial attack (’benign’). The coefficients
𝜆1 to 𝜆4 are tunable hyper-parameters for model training.

Prior to the GAN model training, the VAE model goes through
a pretraining process in which it is trained to make its output 𝑥
identical to its input 𝑥 . This step is introduced such that an adver-
sarial feature point can be obtained faster in GAN training. The
loss function for VAE pretraining is designed as follows.

𝑓VAE = 𝜆1𝐷𝐾𝐿 (𝑝 (𝑧), 𝑞(𝑧 |𝑥)) + 𝜆2∥𝑥 − 𝑥 ∥2 + 𝜆3𝐸 (𝑥, 𝑥) (2)

The active learning algorithm controls the iterative retraining
of the VAE model and the S-IDS model. At each iteration, it sends
to the IDS model a set of unlabeled feature points generated by the
VAE and collects binary labels of the feature points from the output
of the IDS. The input feature points along with their labels form a
labeled dataset. This dataset is added to the existing labeled dataset
of network traffic features to form an augmented dataset for the
next iteration of GAN model retraining. This iterative process of
training data update and model retraining is shown in Fig. 2. A
detailed description of Gen-AAL algorithm is shown in Algorithm
Description 1. The loss function to train the S-IDS model is de-
signed as the binary cross entropy function shown in the following
equation.

𝑓S-IDS = 𝐸 (𝑦,𝑦∗) = − 1
𝑀

𝑀∑
𝑖=1
[𝑦∗𝑖 𝑙𝑜𝑔(𝑦𝑖 ) + (1 − 𝑦

∗
𝑖 )𝑙𝑜𝑔(1 − 𝑦𝑖 )], (3)

where𝑀 denotes the dimension of the feature space.
The proposed Gen-AAL algorithm is derived based on the DFAL

algorithm. Similar to DFAL, the Gen-AAL algoirthm selects un-
labeled feature points to query which are closest to the decision
boundary of the S-IDS, as these points contain higher level of un-
certainty in approximating the IDS model, and clarification of the
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Figure 2: The block diagram of active learning.

Algorithm 1 Generative Adversarial Active Learning
Require: L, set of labeled training data
Require: U, set of unlabeled training data
Require: H , set of hyper-parameters to train the networks
Require: 𝐾 , the number of candidates
Require: 𝑛query, the number of adversarial examples for query
Require: 𝑁 , the maximal iteration of model retraining
1: #initialization
2: 𝑘 = 0
3: L𝑘 = L
4: U𝑘 = U
5: while 𝑘 < 𝑁 do
6: # train the network models 𝐺𝑘 , 𝐷𝑘 using L𝑘 ,U𝑘
7: 𝐷𝑘 = train(H , L𝑘 )
8: if 𝑘 = 0 then
9: 𝐺𝑘 = train(𝐷𝑘 ,H ,U𝑘 )
10: else
11: 𝐺𝑘 = train(𝐷𝑘 ,H , L𝑘 )
12: end if
13: # Randomly select a pool of candidate data points S𝑘 of
14: # size 𝐾
15: S𝑘 ⊆ U𝑘 ; |S𝑘 | = 𝐾
16: for 𝑥𝑖 ∈ S𝑘 do
17: # compute adversarial attacks with network 𝐺𝑘
18: 𝑥𝑖 = 𝐺𝑘 (𝑥𝑖 )
19: end for
20: # query the labels of the top 𝑛query samples with the smallest

21: # ℓ2 norm perturbation
22: Index(𝑘) ← 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 (∥𝑥𝑖 − 𝑥𝑖 ∥2 |𝑖 = 1, ..., 𝐾)
23: Q𝑘 ← {(𝑥 𝑗 , 𝑦 𝑗 ), (𝑥 𝑗 , 𝑦 𝑗 ) | 𝑗 ∈ Index(𝑘) [0 : 𝑛query]}
24: L𝑘+1 ← L𝑘

⋃Q𝑘
25: U𝑘+1 ←U𝑘 \ Q𝑘
26: end while

uncertainty via labeling provides more knowledge about the deci-
sion boundary of the IDS model. As a result, the required inputs in
Algorithm 1, the initialization, the general structure of the while-
loop, and the step of query (lines 20 - 25) are the same as in DFAL.
The main difference in Gen-AAL is the introduction of the network
models𝐺𝑘 , 𝐷𝑘 and the computation of adversarial attacks using𝐺𝑘 .
Unlike the DFAL algorithm which uses a gradient-based DeepFool
algorithm to compute the adversarial feature points against the
S-IDS, our proposed algorithm uses the VAE model to generate
the adversarial feature points. This is because a potential issue

of gradient-based adversarial attack methods is that the perturba-
tion vector is derived from a linearized model of the classifier at a
particular feature point in the feature space [17] . In general, the
decision boundary of a classifier for an IDS is nonlinear. Therefore,
for a classifier with a highly nonlinear decision boundary, such
way of calculating the perturbation may be subject to high model
estimation error.

4 EXPERIMENTS
4.1 Dataset and Data Preprocessing
The network traffic flow features used in the experiment come from
the CIC IDS 2017 Dataset [21]. This dataset contains benign traffic
feature points and malicious traffic feature points from different
types of malware attacks. We choose the malicious feature points
from a particular type of attack named the botnet attack. The orig-
inal data points in CIC IDS 2017 are represented by a mixture of
numerical values and categorical values. Some examples of these
features are: standard deviation time between two packets sent in the
flow, variance of packet length, and average number of bulk rate in
the backward direction. Using the preprocessing method presented
in [4], we convert the original representation to a 78-dimensional
feature vector. The values of the feature vectors are normalized
such that each entry in a vector ranges from 0 to 1. Since the 78-
dimensional vector representation is used by both the adversarial
feature points from the GAN model and the input to the IDS model,
we have by default, assumed that the attacker knows the features
used in the IDS. In practice, such assumption may not hold for a
black-box IDS. Therefore, as part of the future work, we plan to
limit the adversarial perturbation to only a small subset of the 78-
dimensional features in order to have a more realistic experiment
setting.

4.2 Model Design and Training
4.2.1 VAE model. The VAE model consists of an encoder network
and a decoder network, both of which are designed as a 5-layer fully
connected network. For pretraining, we use the Adam optimizer
to train the VAE model for 500 epochs with a learning rate of
0.0001 and a batch size of 128. In each iteration of GAN model
retraining, the learning rate of the VAE model is changed to 0.0002
to cope with the reduced size of training dataset. The values of
hyperparameters in VAE pretraining such as the learning rate and
the number of epochs are empirically chosen to maximize the model
performance, as is the case in choosing the hyperparameter values
in GAN training for both the VAE and the S-IDS models. After
pretraining, the mean-square reconstruction error after pretraining
is reduced to less than 0.1.

4.2.2 IDS model. To show that our proposed method is not limited
to attacking DNN-based IDS, the IDS model used in the experiment
is chosen as a gradient boosted decision tree model. This IDS model
is trained with the same training dataset used for VAE pretraining
and achieves a classification accuracy of 99.7%. Instead of using the
original labels in the CIC IDS 2017 dataset, the prediction result
of the IDS model is used as the ground truth labels for all the
feature points. This is because the objective of adversarial attack
is to compromise the IDS model. Hence, the classification result of
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the IDS model is used as the metric for performance evaluation of
the GAN model.

4.2.3 S-IDS model. The S-IDS model is designed as a 4-layer fully-
connected network. It is trained for 20 epochs using an Adam
optimizer with a learning rate of 0.005 and a batch size of 32. The
loss function is chosen as the cross-entropy loss. The S-IDS model
is used in both the Gen-AAL attack model and the DFAL attack
model. The structure of the DFAL attack model is similar to the
one shown in Fig. 1, except that the VAE generator is replaced by
the DeepFool algorithm to compute the adversarial feature point
𝑥 . The two attack models use the same hyperparameter values for
S-IDS training.

4.3 Generative Adversarial Active Learning
Out of the entire pool of training data, 15 data points are randomly
selected to form the initial labeled dataset L0, while the remaining
data points are used to create the initial unlabeled datasetU0. At
each iteration of model retraining, the top 5 adversarial feature
points with the smallest perturbation are selected for query, which
makes the size of Q𝑘 equal to 10 for 𝑘 ⩾ 1 (5 adversarial feature
points plus 5 original feature points). The adversarial attack success
rate is used as the main metric for performance evaluation, while
the ℓ2-norm of the perturbation is also considered as an auxiliary
metric. The state-of-the-art DFAL algorithm is used as a baseline
algorithm for performance comparison. The maximum number of
iterations for model retraining is set as 𝑁 = 3. We run both our
proposed algorithm (denoted as Gen-AAL) and DFAL 10 times and
record the average performance. In each run, we use a different
random seed for data sampling and model training. blueAs shown
in Fig. 3, the proposed GAN model achieves a 98.86% success rate
with only one iteration of model retraining by which 25 labels
from the IDS has been used. In comparison, the success rate of the
DFAL algorithm is 95.48% at the 1st iteration and eventually reaches
96.25% at the 3rd iteration by which 45 labels has been used. In
terms of perturbation magnitude, the proposed Gen-AAL algorithm
has an average ℓ2-distance of 1.174 at the 1st iteration of model
retraining, which is slightly higher than the average perturbation
of 0.506 by the DFAL algorithm. Samples of the original feature
points and the corresponding adversarial feature points are shown
in Fig. 4. As shown in the figure, the adversarial feature points are
close to the original feature points thanks to the regularization on
the magnitude of perturbation. These experimental results show
that our proposed method outperforms the state-of-the-art in the
success rate of adversarial attacks against an black-box IDS model
despite having a perturbation higher than DFAL.

Due to the highly limited number of training data points, our
GAN model is prone to overfitting. As a result, the success rate of
adversarial attack is sensitive to hyperparameters related to model
training. In particular, when the GAN model learning rate and S-
IDS model training epochs are too small, the attack success rate
will have a large fluctuation in the first few iterations of model
retraining. Increasing the number of epochs for GAN training helps
to reduce this fluctuation but can also slightly reduce the attack
success rate if the number of epochs for GAN training is higher
than the optimal value.. A comparison of adversarial attack success
rates with different choices of hyperparameter values is shown in

Figure 3: Adversarial attack success rate vs. iteration of
model retraining, where the rate values of Gen-AAL with
optimal tuning and DFAL are shown.

Figure 4: Samples of the original feature points and the per-
turbed feature points after active learning.

Fig. 3. To achieve a high success rate in adversarial attacks, it is
important to attain a balance between the trainings of the VAE
model and the S-IDS model through hyperparameter tuning. In
theory, the maximal iteration of model retraining can be as large
as the user wants until all the data points in the unlabeled data
pool are labeled by the IDS. In practice, since an attacker tends
to minimize the number of times the IDS is queried out of the
concern for stealthiness, the model retraining can be stopped early
once a satisfying attack success rate is achieved. Therefore, in our
experiments, the maximal iteration of model retraining in active
learning is set as 3, while a satisfying attack success rate of 98.86%
is already obtained in the first iteration.
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5 CONCLUSION AND FUTUREWORK
In this paper, an adversarial attack method is developed to generate
adversarial examples against a black-box IDSmodel. In the proposed
method, the adversarial feature points generated by the VAE model
are not only used to attack the black-box IDS model, but also used
to sample unlabeled feature points to query the IDS model. By
showing this possible way of using ML algorithms against network
intrusion detection, we intend to reveal the potential threat of ML-
aided malware and the necessity for developing the corresponding
countermeasures. Experimental results show that such dual usage
of VAE generator improves the effectiveness and efficiency of an
adversarial attack.

In the proposed method for adversarial attack, both the GAN
model and the IDS model operate in some predefined feature space.
In a practical malware intrusion, the feature space defined in the
GAN model may not be the same as the feature space defined in
the IDS model. Hence, the actual performance of the proposed ad-
versarial attack method depends on the choice of features for the
GAN model and how precisely the malicious network traffic can
be reshaped to meet the computed values of the adversarial fea-
tures. Compared with wired networks, wireless networks are facing
special challenges in network traffic feature extraction due to the
limited visibility of the nodes collecting audit data and the unstable
signal strength for traffic-based collection sensors [16]. These chal-
lenges may increase the error in malicious traffic reshaping. As a
result, it may take more labels from the black-box IDS and more
iterations of model retraining to launch a successful adversarial
attack. In terms of computation, the trained generator model (VAE)
is only 58.2 KB when saved as a Python dictionary object file, and
therefore should be small enough to load in a small scale mobile
device such as a smart phone in a wireless network.

One direction of future work is to restrain the adversarial pertur-
bations to only the non-functional features, which are the features
whose change of value do not affect the functionality of themalware
according to the attack principles and purposes. Another direction
of future work is to implement the algorithm in an actual mobile
network platform in order to evaluate the attack performance in
a real-world scenario. Yet another future direction of our work
is to consider both reactive and proactive defensive strategies to
adversarial examples; such as defensive distillation [18], gradient
masking [24] and adversarial training [5].
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