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ABSTRACT
The number of cyber threats against both wired and wireless com-
puter systems and other components of the Internet of Things
continues to increase annually. In this work, an algorithm selection
framework is employed on the NSL-KDD data set and a novel para-
digm of machine learning taxonomy is presented. The framework
uses a combination of user input and meta-features to select the
best algorithm to detect cyber attacks on a network. Performance
is compared between a rule-of-thumb strategy and a meta-learning
strategy. The framework removes the conjecture of the common
trial-and-error algorithm selection method. The framework recom-
mends five algorithms from the taxonomy. Both strategies recom-
mend a high-performing algorithm, though not the best performing.
The work demonstrates the close connectedness between algorithm
selection and the taxonomy for which it is premised.

CCS CONCEPTS
• Networks → Packet classification; • Security and privacy →
Mobile and wireless security; Denial-of-service attacks.
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machine learning, algorithm selection, meta learning, feature engi-
neering, cybersecurity
ACM Reference Format:
Marc Chalé, Nathaniel D. Bastian, and Jeffery Weir. 2020. Algorithm Se-
lection Framework for Cyber Attack Detection. In 2nd ACM Workshop
on Wireless Security and Machine Learning (WiseML ’20), July 13, 2020,
Linz (Virtual Event), Austria. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3395352.3402623

1 INTRODUCTION
People, organizations and communities rely on the Internet of
Things (IoT) to aid in almost any conceivable task that was previ-
ously performed manually. As technology advances, components of
IoT have progressed into the wireless domain [10]. These emerging
systems are susceptible to attack by malicious actors wishing to
degrade the system or steal proprietary information [7]. Intrusion
detection systems (IDS) are central to maintaining the security of
modern computer networks from malicious actors [12]. IDS have
been successfully demonstrated in both the wired and wireless do-
main of IoT [10]. The task assigned to an IDS is to classify network
traffic as malicious or normal. Numerous studies [10] have explored
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meta-models to detect malicious behavior in computer networks.
Maxwell et al. [12] further focused on intelligent cybersecurity
feature engineering for various meta-models.

Learning algorithms may be used to formulate a meta-model.
Selection of the best machine learning (ML) algorithm, including
hyper-parameters, for a particular problem instance is a difficult
and time-consuming task [20]. Cui et al. [6] has confirmed con-
clusions of [18] and [25] that meta-models’ performance varies
among problem types and problem instances. Wolpert et al. [28]
uses The Extended Bayesian Formalism to show that given a set
of learning algorithms and problems, each algorithm will outper-
form the others for some (equally sized) subset of problems. This
phenomena has driven researchers to a trial-and-error strategy of
identifying the best meta-model for a given problem. The preferred
meta-model is selected by comparison of model performance met-
rics such as accuracy [5]. Unfortunately, the computational run
time and human investment required to select a learning algorithm
by trial-and-error is generally prohibitive of finding the optimal
choice.

This paper aims to advance the IDS body of knowledge by in-
corporating recent work in algorithm selection. Accordingly, an
algorithm selection framework is introduced. The algorithm selection
framework leverages a taxonomy of ML algorithms. The framework
narrows down the list of applicable algorithms based on problem
characterization. Two strategies are presented to select the most
preferred algorithm: rules-of-thumb and meta-learner. If successful,
the algorithm selection framework promotes high-performance re-
sults of the IDS and assuages the computational cost of performing
multiple ML algorithms.

This paper includes RelatedWorks in Section 2. TheMethodology
is presented in Section 3. Section 4 contains the Results and Section
5 is the Conclusion.

2 RELATEDWORKS
2.1 Intrusion Detection
As in any other domain, criminals and adversaries seek to inflict
harm by exploiting weaknesses in cybersecurity systems. The rate
of system intrusion incidents is increasing annually [16]. Landwehr
et al. [11] provides a taxonomy of all known flaws in computer
systems. Special attention is provided to the category of flaws that
allow exploitation by malicious actors. Commonly, a malicious ac-
tor, or their code, appears benign to a computer security system for
a long enough time to exploit information or degrade the attacked
system. The Trojan horse is among the most prevalent categories
of a malicious attack on computer systems. It is characterized as
a code that appears to provide a useful service but instead steals
information or degrades the targeted system. A Trojan horse con-
taining self replicating code is known as a virus. A trapdoor is a
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malicious attack in which an actor covertly modifies a system in
such a way that they are permitted undetected access. Finally, a
time bomb is an attack that accesses a system covertly and lies
dormant until a detonation time. Upon detonation, the time bomb
will inflict damage to the system either by disrupting service or
destroying information.

Intrusion detection systems are a layer of network security that
tracks activity patterns in a computer system to detect malicious
actors before they can inflict harm. Debar et al. [7] describes ef-
forts as early as 1981 and Sobirey [21] maintains a repository of
prominent IDS projects. According to Debar et al. [7], the success
of these systems has spawned a commercial market of IDS software
including brands such as Sysco Systems, Haystack Labs, Secure Net-
works, among others. Typically, the IDS employs a detector module
that monitors system status. The detector catalogues patterns of
both normal and malicious activity in a database. The detector also
monitors patterns in the current system configuration. Further, the
detector provides an audit of events occurring within the system.
The detector leverages these data channels to generate an alarm
for suspicious activity and countermeasures if necessary. An IDS is
evaluated by its accuracy of attack detection (false positive), com-
pleteness to detect all threats (false negatives) and performance to
detect threats quickly.

NSL-KDD is a publicly available benchmark data set of network
activity. NSL-KDD improves on several flaws of the well-known
KDD Cup ‘99 benchmark data set. Most notably, NSL-KDD has
rectified the 78% and 75% duplicate records in training and test sets,
respectively [16]. Four classes of attacks are recorded in the data set.
Denial of service attacks bombard a network with an overwhelming
quantity of data such that the computing resources are exhausted.
As a result, the system cannot fulfil any legitimate computing pro-
cesses. User to Root attackers enter the network disguised as a
legitimate user but seek security vulnerabilities which grant them
elevated system privileges. A remote to user attack is performed by
sending data to a private network and identifying insecure access
points for exploitation. Probing is the attack technique by which
the assailant studies an accessible system for vulnerabilities which
will be exploited at a later time [13].

Maxwell et al. [12] and Viegas [24] describe IDS tools that incor-
porate ML models. Unfortunately, raw network traffic data is not
a suitable input for building accurate and efficient ML models. In-
stead, the data must be transformed as a set of vectors representing
the raw data. The process of constructing such vectors is known
as feature engineering, which is a non-trivial task that requires
both domain knowledge and mastery of ML to capture all available
information in the model. It is shown experimentally that varying
the feature engineering strategy does affect classification accuracy
of the IDS but no single feature is known to be superior to others.

Kasongo [10] explores IDS procedures catered for the wireless
domain. The UNSW-NB15 data set was selected to derive both the
training and test data sets. A wrapper-based feature extractor gen-
erated many feature vectors for comparison from a full set of 42
features. The experiment was performed for both binary and multi-
class classification in which the type of attack was predicted. Can-
didate algorithms included decision Trees, Random Forest, Naïve
Bayes, K-Nearest Neighbor, Support Vector Machines, and Feed-
forward Artificial Neural Networks (FFANN). The optimal feature

Figure 1: Themeta-learner version ofRice’s framework [29].

set consisted of 26 columns. The FFANN reflected the best classifi-
cation accuracy on the full data set with 87.10% binary and 77.16%
multi-class. Random Forest, Decision Tree, and Support Vector Ma-
chine were close behind. When the feature set and neural network
hyper-parameters were optimized, the classification accuracy of the
FFANN improved to 99.66% and 99.77% for binary and multi-class
classification, respectively.

2.2 Algorithm Selection Problem
Rice’s algorithm selection framework was presented in 1976 [17].
The framework is performed by employing all algorithms under
consideration on all problems in a problem set. One or more perfor-
mance metrics are chosen, and the performance of each algorithm
on each problem is reported. Upon completion of the process, the
preferred algorithm for each problem is taken as the one with the
best performance metrics [17]. Woods [29] presents a modern de-
piction of Rice’s framework as phase 1 in Figure 1.

The classic approach of learning algorithms is known as base
learning. That is an ML algorithm which builds a data-driven model
for a specific application [5].Meta-learning, however, is an approach
introduced by [23] which algorithms learn on the learning process
itself. A meta-learning algorithm extracts meta-features 𝑓 (𝑥) ∈
space 𝐹 from a problem x ∈ problem space 𝑃 . The meta-model
is trained to recommend the best-known base learning algorithm
𝑎 ∈ 𝐴 to solve 𝑥 . Works such as [15] and [3] further contribute to
the theory of meta-learning recommendation systems [5].

In 2014, Smith [19] proposes the concept of applying meta-
learning to Rice’s model. It was not until 2016, however, that [5]
implemented the concept. Figure 1 demonstrates that Cui et al. [5]
trained a meta-learning model to correlate problem features to al-
gorithm performance and that the trained model could be used to
recommend the algorithm for unobserved problems within Rice’s
framework. The meta-learner correctly recommended the best al-
gorithm in 91% of test problems. Further, it demonstrated that time
to perform algorithm selection could be reduced from minutes to
seconds compared to trial-and-error techniques [5]. Follow on stud-
ies by [29] and [26] expanded on this work by exploring various
meta-features and meta-learner response metrics.

3 METHODOLOGY
The assigned task for an IDS is to classify network traffic records
as normal or malicious. This task is investigated from the broader
perch of the algorithm selection problem. Figure 2 shows that within
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the analysis process, three factors drive the analytical approach and
analytical technique selection. They are the input to the algorithm
selection framework.

Figure 2: The factors identified are superimposed with the
stages of algorithm selection which they impact.

3.1 Characterizing the Problem
The framework is a mechanism to characterize an analysis problem
and to determine the algorithms that best matches the problem
characterization. The three factors each drive analytical approach
selection and analytical technique selection. The factor assigned
task pertains to the problem provided by a decision-maker. The
analyst must decipher the intent of the assignment from the lexicon
of the decision-maker into specific analytical terms, which are listed
under the Task. This list of terms, called considerations is shown
in Figure 3 for each factor. The considerations for the factor data
describe the different formats analysts commonly receive data for
analysis problems. The data factor is important because it relates to
the problem’s compatibility with themathematical mechanics of the
analysis technique. Likewise, the considerations for the resources
factor help the analyst identify which algorithms are compatible
with the available resources. The analyst should refer to Figure 3
to evaluate and record the considerations for each factor prior to
beginning step 1.

3.2 Step 1: Map Problem to Category and
Approach

Step 1 leverages information from the problem characterization to
identify the appropriate analytical approaches. Each consideration
selected from the assigned task factor maps to one or more categories
of analysis. The categories of analysis describe the general goal of the
analysis problem [4]. Each category of analysis can be implemented
by certain analytical approaches. The analytical approach a tech-
nique class referring to the specific type of response the techniques
produce. Therefore, the framework leverages a hierarchical taxon-
omy that groups techniques grouped by both categories of analysis
and analytical approaches. Figure 4 shows the mapping from as-
signed task to category of analysis, and the mapping of category of
analysis to analytical approach.

Since the task of an IDS is to classify network users, the prescrip-
tive and predictive categories of analysis are selected.

An excerpt of the proposed taxonomy is presented in Figure 5.
The taxonomy is built with an object-oriented structure to promote

Figure 3: The considerations are shown for each factor
which drives analytical approach and analytical technique
selection.

Figure 4: The assigned task for an IDS is classify. Classify is
one of 11 common assigned tasks. It belongs to the predic-
tive and prescriptive categories of analysis.

flexibility and expandability. As an example, techniques are shown
within the regression and classification analytical approaches. The
text predictive and descriptive appears at the bottom edge of the
regression panel to indicate that regression techniques produce
results suitable for either of these two categories of analysis. The
requirements, or required considerations, for each factor are pre-
sented with the technique. Compatible training styles are listed
to the right of the technique name. The object-oriented structure
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allows new techniques to be easily added and new attributes to be
included.

Figure 5: A portion of the proposed taxonomy is high-
lighted to show its structure.

3.3 Step 2: Rank Techniques
The framework identifies a subset of techniques that are compatible
for the problem according to application. Next, the framework lever-
ages the remaining three factors data, resources and experience to
discern aspects of technique compatibility relating to the mechanics
of the mathematical model. Step two predicts the utility scores of
each algorithm from these factors according to two strategies: rules
of thumb and meta-learning. They are presented in parallel below.

3.3.1 Rules-of-Thumb. A logical decision tree is used to assign a
preference rank among candidate algorithms. The decision tree is
built according to rules-of-thumb regarding features of the data.
The features pertaining to data also impact the compatibility of
techniques in respect to resources. Thus, it is justified to use the
same decision tree, Figure 6, to adjudicate the scores for both factors.

3.3.2 Meta-Learning. A meta-learner is constructed in Python 3.7.
All data sets are pre-processed according to best practices for data
mining. Base learning is performed on 14 benchmark data sets with
20 repetitions. For each repetition, the data sets were split into
training and test sets with an 80/20 ratio and with stratification.
The KDDTest+ and KDDTrain+ sets were obtained having already
been split into a master test set and a training set. 12 meta-features
of each data set were stored as predictor data for the meta-learner;
the mean observed recall was stored as the target. The meta-learner
was trained to model recall as a function of meta-features using
a support vector regression algorithm. The radial basis function
kernel was selected. The regularization parameter was set at 1.0,
and the kernel coefficient was auto-scaled as a function of the
number of features and predictor variance. All other parameters
followed Scikit-learn defaults [14]. Pseudo-code of the meta-learner
is presented in Algorithm 1.

The candidate algorithms are selected because they are members
analytical approaches derived in step 1 of Section 3.2. Clearly, these

Figure 6: The decision tree represents the logical tests used
to rank the recommendations via the rules of thumb strat-
egy

.

Algorithm 1: Pseudo-code of Meta-learner
input :Repository of Datasets, Candidate Algorithms
output :Predicted Recall & Observed Recall of Test Dataset

using Candidate Algorithms

Pre-processing
for all Dataset in Repository do

for all column in Dataset do
if column is numerical then
miniMax(0,1)
PCA()
miniMax(0,1);
else column is categorical;
OneHot()

Feature Extraction
for all Dataset in Repository do

featureExtract()

Base Learning
for all Algorithm do

for all Dataset in Repository do
trainBaseLearner()
TestBaseLearner()
RecordRecall()
RankAlgorithms()

Meta Learning
for all Algorithm do

TrainMetaLearner()
PredictRecall()
RecordRecall()
RankAlgorithms()

are not the only algorithms that fall into the applicable analytical
approach. Rather, they represent a demonstrative taxonomy. Note
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that the Scikit-learn default settings are selected on each algorithm
to show generality of the algorithm selection framework.

Training data sets are selected from easily accessible benchmark
repositories. The first five are selected to provide diversity of meta-
features to the meta-learner and improve the robustness of the
model. The nine subsets of KDDTrain+ are selected to provide
statistical information consistent with the KDDTest+ data set. KD-
DTrain+ is split into subset to promote diversity of meta-features
but also reduce the number of records in the training set which is
an order of magnitude greater than the number of records in the
test set. A uniform random number generator is used to determine
the number of rows allocated to each training set. Rows are not
re-arranged during the subset process.

(1) Training Data
(a) Heart: Predict presence of heart disease from 13 predictor

variables [9]
(b) Framingham: Predict presence of heart disease in the Fram-

ingham study from 15 predictor variables [1]
(c) Spam: Predict if an email is spam based on six predictor

variables [2]
(d) Loan: Predict whether a consumer purchases a loan from

Thera Bank based on 12 predictor variables [8]
(e) Cancer: Predict whether a patient has breast cancer from

30 predictor variables collected in a fine needle aspirate
procedure [27]

(f) Nine subsets of KDDTrain+: Predict whether a network
activity record is normal ormalicious from four categorical
and 39 numerical predictor variables [22]

(2) Test Data
(a) KDDTest+: Predict whether a network activity record is

normal or malicious from four categorical and 39 numeri-
cal predictor variables [22]

The choice of meta-features was adopted from [26]. The follow-
ing meta-features were used as predictor data by the meta-learner
to model expected recall.

• Number of Rows
• Number of Columns
• Rows to Columns Ratio
• Number of Discrete Columns
• Maximum number of factors among discrete columns
• Minimum number of factors among discrete columns
• Average number of factors among discrete columns
• Number of continuous columns
• Gradient average
• Gradient minimum
• Gradient maximum
• Gradient standard deviation

4 RESULTS
The algorithm selection framework is applied to the task of classify-
ing network traffic asmalicious or normal. Problem characterization
is performed in step 1 to identify prescriptive and predictive as the
categories of analysis. This leads to four analytical approaches,
namely regression, classification, multivariate, and reinforcement.
Five example algorithms which meet this criteria are taken from a
notional taxonomy.

In step 2, candidate algorithms are ranked in order of preference
by each recommendation strategy, rules-of-thumb andmeta-learner.
Both strategies yielded support vector regression as the most highly
recommended algorithm. According to the mean observed recall,
random forest was the best performing algorithm to detect mali-
cious activity from the KDDTest+ data set. The standard deviations
of observed recall on each algorithm were very low. The 90% Bon-
ferroni confidence interval for support vector machine (SVM) and
support vector regression (SVR) overlapped, indicating statistically
identical recall performance. All other mean values were statisti-
cally unique. Further, the Spearman’s coefficient of rank correlation
was not statistically significant, largely due to the small size of the
rank scheme. Since neither recommendation strategy succeeded
in predicting the best performing algorithm, recall efficiency is
introduced. Recall efficiency, Equation 1, is the ratio of the recall
observed by the top recommended algorithm to best observed recall.

𝐸𝑅 =
𝑅𝑏𝑒𝑠𝑡𝑅𝑒𝑐

𝑅𝑏𝑒𝑠𝑡𝑂𝑏𝑠

(1)

The recall efficiency for SVR, the top recommendation of both
strategies, is 0.98. Table 1 presents a summary of the results in-
cluding observed mean recall, meta-learner predicted recall, mean
runtime, standard deviation of observed recall, observed ranks, rule-
of-thumb predicted ranks, and meta-learner predicted ranks. Figure
7 outlines the mean observed recall and the recall predicted by the
meta-learner for each algorithm.

Figure 7: The predicted recall and observed mean recall are
compared for each algorithm.

It is difficult to ascertain whether either of the recommendation
strategies employed in this study were successful. While the recall
efficiency is very high, the rank correlation was not conclusive. All
base learners produced very high and very similar recalls. It would
therefore be difficult for any model to discern the true rank prefer-
ence. The meta-model employed the meta-features according to the
precedent set by [26], however there were many more proposed by
[5] that were not used. Furthermore, the meta-learner was trained
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Table 1: Results compare the recommendations of each strategy to observed algorithm performance.

Observed
Mean Recall

Meta-Learner
Predicted Recall

Mean
Runtime (s)

SD of Observed
Recall

Observed
Ranks

Rules-of-Thumb
Predicted Ranks

Meta-Learner
Predicted Ranks

Decision Tree 0.975340865 0.891227551 0.188214 0.004141 2 4 5
Random Forest 0.982216595 0.935765698 1.593553 0.003063 1 3 3
Naive Bayes 0.863400857 0.952576618 0.007137 0.007961 5 2 2
SVM 0.959329957 0.925262066 8.602973 0.003163 4 5 4
SVR 0.962446436 0.96525973 7.647529 0.003088 3 1 1

by only 14 data sets, significantly less than used in [29]. Providing
more training sets, especially from the domain of network traffic,
would likely improve the predictive capability of the meta-learner.

As a whole, the framework is beneficial even when it does not
recommend the true best performer. The framework consistently
filters techniques that are incompatible with the problem character-
ization. Further, the framework identifies five viable options, each
of which perform excellently.

5 CONCLUSION
Cyber attack detection from an IDS using any of the recommended
algorithms could reasonably be deemed successful. Neither of the
two recommendation strategies demonstrated perfect results. They
did, however, show enough promise to motivate further investiga-
tions. Fundamentally, the meta-data and user input collected by
the framework does contain information capable of consistently
predicting a good analysis technique for a problem. Notably, there
were algorithms from distinct analytical approaches that performed
well on the same task. The process of problem characterization fits
well into the framework but does require further refining. The rule-
of-thumb decision tree provided intelligible recommendation logic
whereas the meta-learner is a black box model. Future work should
use the Gini criterion to optimize the decision tree. Further, the
meta-learner should be improved to include more meta-features
and training sets. There is a close connectedness in having a use-
ful taxonomy of algorithms and a successful algorithm selection.
This relationship is only beginning to be understood. Wireless IDS
already provide good classification performance, however, algo-
rithm selection, hyper-parameter tuning and feature engineering
suffer from the time-costly trial-and-error practice. The algorithm
selection framework may be a step forward in reducing this cost.
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