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ABSTRACT

Adversarial evasion attacks have been very successful in causing
poor performance in a wide variety of machine learning applica-
tions. One such application is radio frequency spectrum sensing.
While evasion attacks have proven particularly successful in this
area, they have done so at the detriment of the signal’s intended pur-
pose. More specifically, for real-world applications of interest, the
resulting perturbed signal that is transmitted to evade an eavesdrop-
per must not deviate far from the original signal, less the intended
information is destroyed. Recent work by the authors and others
has demonstrated an attack framework that allows for intelligent
balancing between these conflicting goals of evasion and commu-
nication. However, while these methodologies consider creating
adversarial signals that minimize communications degradation,
they have been shown to do so at the expense of the spectral shape
of the signal. This opens the adversarial signal up to defenses at
the eavesdropper such as filtering, which could render the attack
ineffective. To remedy this, this work introduces a new spectral
deception loss metric that can be implemented during the train-
ing process to force the spectral shape to be more in-line with the
original signal. As an initial proof of concept, a variety of methods
are presented that provide a starting point for this proposed loss.
Through performance analysis, it is shown that these techniques
are effective in controlling the shape of the adversarial signal.
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Figure 1: A wireless communications scenario in which an
intended communications link is being eavesdropped by a
machine learning based spectrum sensor. The transmitter
utilizes an adversarial evasion attack to intelligently "per-
turb" its signal to evade the eavesdropper [4].

1 INTRODUCTION

Boosted by continued improvements in areas such as processing
power, storage capacity, and architectural improvements, machine
learning algorithms have seen increased usage in recent years and
have shown great potential benefit in a wide variety of research
fields. One such emerging research field is signal processing, where
research has focused on utilizing recent advancements in machine
learning to improve on traditional digital signal processing tech-
niques through increased performance and/or a reduced need for a
priori knowledge. Example signal processing applications showing
promise in their utilization of machine learning include spectrum
signal detection, synthetic modulation schemes, direction of arrival
calculation, jamming detection [1, 7], and automatic modulation
classifiers (AMC) [17, 18, 21, 22], among many others. AMC research
in particular has shown significant promise in utilizing machine
learning to reduce requirements on pre-defined expert features by
utilizing state-of-the-art convolutional neural networks for per-
forming both feature extraction and classification tasks [11, 12].
Given the improvements that machine learning offers, and thus
the adoption of such methods in real world applications, the secu-
rity of these networks must be further considered. Recent research
has shown that adversarial attacks can harm the performance of
machine learning networks by forcing misclassifications or oth-
erwise causing the network to operate in ways orthogonal to its
intended use or desired application [8, 13, 19]. Various adversarial
techniques can be used to attack a machine learning network, such
as poisoning [20], Trojan [3], and evasion attacks. In the context of
attacking AMC networks, the focus of this work, evasion attacks
have been used to make slight intelligent changes to signals so that
a trained AMC machine learning network misclassifies the signal
[2, 6, 14, 16]. Therefore, these adversarial techniques can be used as
a mitigation approach against eavesdroppers and malicious actors.
When developing these attacks, there is a natural tradeoff that
arises between security and the intended application. For exam-
ple, while the goal of an evasion attack against an AMC machine
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learning algorithm is to cause a misclassification and/or reduce
user confidence, it is important that the perturbed signal still ac-
complish its intended use of still being successfully received by
its intended target. In the field of image recognition, this mani-
fests in the idea that an image perturbed by an adversarial attack
should still be easily discernible, and even viewed as untouched, by
a human observing the image [8].

The adversarial scenario considered in this work is illustrated by
Figure 1. As previously mentioned, balancing the two conflicting
goals of evasion of an eavesdropper and successful communica-
tion by an intended receiver is difficult and has been examined in
previous work [4, 5, 10, 15]. In this work, the idea of successful
perception of the signal at the receiver is driven using metrics such
as bit error rate (BER) that indicate the success of the communica-
tion. In addition, this work presents a novel form of perception to
be considered alongside BER, that of spectral integrity. The previ-
ous works in this area have shown that adversarial perturbations
naturally tend to manifest out of the main lobe of the signal and
lead to adversarial signals that do not hold well the same spectral
shape as the original signal [5]. This change in the spectral shape
of the signal poses a problem to the success of the attack as the
eavesdropper could leverage preprocessing stages to reduce the
impact of the perturbation, such as with a filter, and potentially can
lead to increased likelihood of detection that an attack is taking
place since the spectral shape does not appear benign.

This work introduces a new loss metric for training machine
learning based adversarial evasion attacks that helps maintain spec-
tral integrity of the adversarially perturbed signal while still suc-
cessfully achieving evasion and solid communication. Section II
of this paper first provides a background on previous work done
in this field and the particular evasion attack method used in this
work. Section III introduces candidate spectral integrity loss met-
rics and provides relevant performance analysis. Finally, Section IV
concludes this work and discusses future work.

2 BACKGROUND

Without proper care, evasion attacks used to fool an AMC machine
learning algorithm generally have a drastic negative impact on
the communication link between the transmitter and intended re-
ceiver. Recently, work by the authors and others have examined
how these attacks can be improved in order to provide a better
balance between these two conflicting goals. Hameed et. al. [10] ac-
complished this by introducing a gradient descent training method
to craft signal perturbations that utilize a combined target function
that considers both evasion performance and BER. While BER is
non-differentiable, and thus not suited to gradient based learning
approaches, a gradient is estimated using simultaneous pertur-
bation stochastic approximation (SPSA). This approaches offers
improvement over previous methods where the perturbation was
simply power limited in the hope that this would lead to decreased
BER. Flowers et al. improved upon these prior works through the
development of a so-called "communications-aware" attack [5].
For the communications-aware attack, an Adversarial Residual
Network (ARN) is leveraged in order to learn to make intelligent
signal perturbations that balance the two opposing goals of eva-
sion and communication. This approach utilizes three separate loss
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functions to accomplish this: adversarial loss, communication loss,
and power loss. These three losses are each weighted and summed
together to guide the ARNs learning process. The work of [4] ex-
panded on the communications aware architecture first introduced
in [5] in order to better utilize forward error correction (FEC), but
it was found that the changes to the loss functions and transmitter
architecture provided improvements beyond just utilizing FEC. The
training framework presented in [4], and illustrated in Figure 2,
serves as the foundation for the work presented in this paper.

As shown in Figure 2, the considered approach utilizes an Ad-
versarial Mutation network (AMN) that is trained to create an in-
telligently perturbed signal given the original signal as input using
a convolutional neural network (CNN). This adversarial signal is
what is transmitted to the intended receiver and intercepted by the
eavesdropper. It is assumed here that the eavesdropper utilizes an
AMC network with the architecture described in [18] trained for
BPSK, QPSK, 8PSK, 16QAM, and 64QAM. Each AMN is trained to
create adversarial signals for just one modulation scheme at at a
time. As previously mentioned, the AMN developed in [4] utilizes
three loss functions to train the AMN network, namely:

e Adversarial Loss: prioritizes the AMN’s ability to success-
fully learn to avoid classification by the eavesdropper. It is
calculated using the confidence of the eavesdropper in the
true source modulation, ps, determined using the output of
the final softmax layer in the eavesdropper’s AMC.

e Communication Loss: prioritizes the AMN’s ability to suc-
cessfully learn to maintain the communication link between
the transmitter and friendly receiver. It does this by using
the calculated BER, b, as well as the error vector magnitude
(EVM) between the clean symbols and the perturbed sym-
bols, defined as |Stx — Stx+pl. BER is calculated using the
original bits at the transmitter and the final bits decoded at
the receiver after undergoing AWGN channel effects. The
AWGN channel adds random noise between 0-20 dB. In this
work it is assumed that the transmitter has access to the
receiver in order to know the bits received. The BER is the
true metric that the network wants to minimize, but is non-
differentiable, so the EVM, which is differentiable, acts as
a proxy for the BER and provides a gradient indicating the
direction the weights should update. The BER then provides
the magnitude of the update along this gradient.

e Power Loss: prioritizes the AMN’s ability to learn to minimize
the power of the perturbation so that the adversarial signal
is close to the original signal. It does this by using the inverse
of the signal-to-perturbation ratio (SPR).

During the AMN’s training process, these three losses are each
scaled and then summed together to create the total loss. These
scaling factors allow for finer balancing between the communica-
tion and evasion goals. The scaling factors are « for adversarial loss,
B for communications loss, and y for power loss. More specifically,
increasing a scaling factor relative to the others during training re-
sults in the corresponding loss being more highly prioritized. These
loss constants are restricted such that they must sum to 1. Finally,
the three loss functions are designed such that they all converge to
zero. Therefore the network learns to minimize the loss values dur-
ing training. Currently, these loss constants are estimated during
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Figure 2: The training process that this work builds off of. It utilizes three losses, evasion loss, communication loss, and power
loss each calculated at the eavesdropper, receiver, and transmitter respectively [4]. This work will replace the power loss

calculated in the transmitter, leaving the others untouched.

training based on the rough needs of the system, such as whether
evasion, communication, or power should be more important. A
more exhaustive look into the best way to determine the values of
the constants is left to future work. During the training process,
the total loss is back-propagated through the CNN of the AMN to
update the weights in order to create the most effective adversarial
signal. The optimization technique used is Adam. To summarize,
the loss functions are defined below:

Liotal = aLagy + BLcomm + ¥ Lpwr (1)
Lagv = —lOg(l _ps) (2
Leomm = by X EVM(Stx, Stx+p) 3)

1 Ep
L Wr = & o 4
P Es/Ep, ~ Es @)

The architecture changes specified in [4], originally designed for
use of forward error correction coding on the signal, allowed for
improved spectral shape over the results seen in [5]. This improve-
ment was predominantly due to improvements in the power loss
metric and the usage of AMN as opposed to an ARN.

In this work, the same framework described above is used. How-
ever, here the power loss is replaced with a novel loss metric termed
spectral deception loss. The goal of this loss will be to more ex-
plicitly train the network to create adversarial signals that follow
the same spectral shape as the original signal, while still balancing
between the conflicting goals of evasion and intended communi-
cations. The rest of the architecture, including the adversarial and
communication loss, remains unchanged.
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3 SPECTRAL DECEPTION LOSS

In this section, a variety of candidate spectrum deception loss met-
rics are presented, and their different impacts on the adversarial
signal’s spectral content are analyzed, along with its performance
on eavesdropper evasion and intended communication capabilities.
As previously discussed, it is desirable for the adversarial signal to
have a similar spectral shape as the original signal so that it avoids
detection and defensive capabilities. In this work, we determine
this similarity through the power spectral density (PSD) and associ-
ated phase plot of the original signal, perturbation, and combined
adversarial signal. Due to space considerations, only the PSD and
not the phase plots are shown as the PSD provides a much better
indication of success.

3.1 Examining the Necessity of Deception Loss

In the previous work, there was uncertainty over whether the
power loss metric was sufficiently useful at providing the desired
intent of maintaining the original shape of the signal. This was
due partially to the fact that the two main performance metrics,
BER and evasion classification success, were driven directly by the
communication and adversarial loss, respectively, and not by the
power loss. Additionally, the power loss and communication loss
were shown to push the network to converge in the exact same way
for these metrics, as is shown in Figure 3, leading to unnecessary
redundancy among these two losses.

It makes sense that these two losses would provide similar re-
sults for the chosen performance metrics. However, observation of
the PSD of the resulting adversarial signal when prioritizing each
loss highlights the true differences between them. An example of
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Figure 3: The BER and eavesdropper classification accuracy
for QPSK adversarial signals when trained with either only
communications loss or only power loss. The values are plot-
ted over a range of 0-20 dB SNR. The theoretical values for
the BER and classification accuracy of QPSK are shown.

this difference is shown in Figure 4. Prioritizing the power loss
results in a PSD shape for the perturbation that is similar to the
original signal, only less powerful. On the other hand, prioritizing
the communication loss results in a PSD that is more jagged in the
center lobe and has significant side lobe content. From this result,
it can be observed that the power loss metric steers the training of
the AMN to keep the spectral shape of the original signal while the
communication loss metric disregards the original signal shape as
long as the intended receiver is minimally impacted.

While the power loss appears to provide the exact behavior
desired to maintain spectral integrity, this is only true under an
ideal scenario. In the power loss result shown in Figure 4, the power
loss is the only loss prioritized. However, when being balanced
with the communication and evasion losses, the shape, while still
an improvement on previous work, no longer resembles a clean
signal and has some side lobe content [4]. Spectral deception loss
is introduced as a solution to this problem so that the spectral
integrity can be preserved even when successfully evading and
communicating. The deception loss will operate in the frequency
domain and thus allows for the AMN to better control the frequency
content of the signal as opposed to the prior power loss metric that
controls the time content of the signal. This should allow for better
success in shaping the signal. As mentioned previously, this control
over the spectral shape is desirable so that the attack can better
avoid defenses such as filtering in the preprocessing stage of the
eavesdropper. Previous work resulted in perturbations that had
significant content in the side lobe. Such a perturbation could be
weakened by a low pass filter that would remove this side lobe
content and potentially render the attack ineffective. By forcing the
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Figure 4: The PSD for both a perturbation created using only
communication loss and one created using only power loss
compared to the PSD of the original signal.

perturbation to be more in lobe, the deception loss should help the
attack remain robust to these forms of filtering and defense.

3.2 Deception Loss

The deception loss method to be discussed within this work is
based upon the frequency domain characteristics of the signal.
More specifically, the proposed deception loss function operates
on the Fast-Fourier Transform (FFT) of both the perturbation and
original signal. This is done so that the perturbation lies more
in-band and thus the adversarial signal will exhibit less side-lobe
content and appear more benign. A function must be used in order
to quantify the difference between the two FFTs. Two functions,
Mean Squared Error (MSE) and Huber, are examined in this paper
for their potential use in the deception loss.

3.2.1 MSE FFT Loss. MSE is a regression loss function that deter-
mines the difference between expected and actual values. In this
paper, MSE is used as the average squared difference between the
FFTs of the original signal and the perturbation. MSE is defined as:

1 n
=D =i
i=1

where y is the value of the original signal and § is the value of
the perturbation. After calculation, the loss was normalized such
that 0 < MSE < 1 to better align with the communication and
adversarial loss values.

®)

3.2.2  Huber FFT Loss. Although MSE is a good comparison metric
for two functions, it is often heavily influenced by outliers. Huber
loss mitigates the affect of outliers through an adjustable delta
value, 8. If the absolute difference between the expected and actual
value is less than §, then Huber loss calculates their difference using
an equation similar to MSE. Otherwise, the affect of the outlier is
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adjusted using the Mean Absolute Error (MAE) function. The Huber
loss function is shown below.
Jy-97  ly-gl<e ©
Sly—g| — %52 otherwise
where y is the value of the original signal and § is the value of the
perturbed signal. Equation 6 specifies the function used to calculate
the difference between two corresponding points in the FFTs of
the original signal and perturbation. These differences are then
summed and divided by the total number of points to obtain an
average, like what is done with MSE. The value of § used in this
work is 1. Similar to MSE, Huber loss is normalized such that the
loss value is contained between 0 and 1.

3.3 Results

The primary qualitative metric used when examining the success
of the various spectral deception loss methods at maintaining the
spectral shape was visual inspection of the PSD. Quantitative met-
rics used to validate the success of the considered metrics include
the BER of the intended communications link and the achieved re-
duction in classification accuracy of the eavesdropper. The results
presented in this section are predominantly examined with AMNs
trained for QPSK modulated signals. However, other modulation
schemes were also tested and exhibited the same characteristics.
The eavesdropper’s AMC used in this work was trained on BPSK,
QPSK, 8PSK, 16QAM, and 64QAM.

As mentioned previously, this FFT-based approach was tested
using both the MSE loss function and the Huber loss function. Figure
5 shows the resulting PSDs of just the perturbation for the MSE loss,
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Figure 7: The BER and eavesdropper classification accuracy
for QPSK adversarial signals when with the deception loss
that is done on the FFT using both Huber and MSE loss. The
signals correspond to those shown in Figure 6.

Huber loss, and the original power loss from the prior work. This
figure illustrates that there is slight improvement with the MSE
method over the power loss metric, but very minimal. However, the
Huber loss method exhibits much better behavior over the power
loss metric given that the shape of the perturbation is much more
in-band to the original signal. This difference is due to the fact that
the Huber loss is able to better handle situations of extreme error,
which can occur during the training process especially at the start
of training. Figure 6 shows the PSDs of the resulting adversarial
signals. As can be seen from this figure, there is a trade off between
the MSE method and the Huber method with respect to side lobe
growth vs. main lobe corruption.

As expected, this trade-off in spectral shape performance comes
at the detriment of intended communication performance. Figure 7
shows the BER and eavesdropper classification accuracy over the
SNR range of 0-20 dB of the two methods, along with the theoretical
QPSK bit error rate with no perturbation added. When using loss
constants of @ = 0.5, f = 0.2, and y = 0.3, the BER rate for the Huber
method is much worse than that of the MSE method. Additionally,
when the MSE deception loss is the only loss considered during
training (i.e. « and f are set to 0), the BER converges to the theo-
retical curve, which does not occur for the Huber loss. However,
by adjusting the loss constants, the communication performance
can be made better as is shown by the Huber result with ¢ = 0.1,
B = 0.8, and y = 0.1. Naturally, this does lead to worse evasion
performance. Interestingly, in Figure 6 it can be observed that the
resulting spectral shape of the adversarial signal does not seem
to drastically change for this second Huber trial even though the
deception loss is less prioritized. This shows that the constants can
be adjusted to meet the needs of the attack and that when using
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Huber loss in the deception loss, the spectral shape can be main-
tained even when less prioritized (so more priority can be spent on
evasion or communication improvement).

4 CONCLUSION AND FUTURE WORK

The results of this work show the benefit of utilizing a spectral de-
ception loss metric within the considered machine learning based
adversarial evasion attack. The considered FFT-based methods of
developing this metric provided solid improvements over the prior
work and can be used as the foundation for future work. Utiliz-
ing the FFT, two loss metrics were considered, namely MSE and
Huber losses. Performance analysis demonstrated that the Huber
loss was more successful at maintaining the spectral shape of the
original signal over the MSE loss, at the cost of decreased intended
communication performance.

While these results show promise, there is still much future work
to develop the concept further. The various deception loss methods
presented in this work are intended as starting points and improv-
ing upon these may offer greater success. For example, one simple
adaptation could come in the form of completing a more exhaus-
tive parameter search over the configurations for the deception
loss. Additionally, other functions than the FFT investigated here
could be used to determine and quantify the difference between
the original signal and the adversarial signal. For example, mini-
mizing the difference between the resulting PSDs and associated
phases could be examined. Finally, while mean squared error (MSE)
and Huber are good for determining the difference between corre-
sponding elements in an array of data, such as with time domain
samples, they may not be the most appropriate for the frequency
domain. Other functions, such as Fréchet distance, may provide
better comparisons of similarity and should be further studied.

The predominant method used in this work to determine suc-
cess of the loss was to qualitatively observe if the perturbation
was concentrated in the main lobe of the signal. While this may
be sufficient in determining whether a human operator can detect
the adversarial signal, future work should examine whether this
adapted attack framework would be effective in evading detection
by a machine learning algorithm aimed at detecting these attacks.
Additionally, previous work has assumed oversampling of the sig-
nal by the eavesdropper which provides a larger attack vector for
the evasion attack in terms of available bandwidth outside of the
signal’s main lobe. Future work should loosen this assumption in
order to better test the success of the deception loss. Recent work
has focused on strategies that make the classifier networks more
robust against attacks such as utilizing curriculum training [9]. Fu-
ture work should examine the success of evasion attacks against
such defensive techniques when employing the deception loss.

While the concept of a spectral deception loss is an extremely
new area of focus, this work has shown that it is one that offers great
potential in the effort to mask the limitations and distinguishing
characteristics of existing evasion attacks.
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