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ABSTRACT
Deep learning techniques can classify spectrum phenomena (e.g.,
waveform modulation) with accuracy levels that were once thought
impossible. Although we have recently seen many advances in this
field, extensive work in computer vision has demonstrated that an
adversary can “crack” a classifier by designing inputs that “steer”
the classifier away from the ground truth. This paper advances the
state of the art by proposing a generalized analysis and evaluation
of adversarial machine learning (AML) attacks to deep learning
systems in the wireless domain. We postulate a series of adversarial
attacks, and formulate a Generalized Wireless Adversarial Machine
Learning Problem (GWAP) where we analyze the combined effect of
the wireless channel and the adversarial waveform on the efficacy of
the attacks. We extensively evaluate the performance of our attacks
on a state-of-the-art 1,000-device radio fingerprinting dataset, and
a 24-class modulation dataset. Results show that our algorithms
can decrease the classifiers’ accuracy up to 3x while keeping the
waveform distortion to a minimum.

CCS CONCEPTS
• Theory of computation→ Adversarial learning; • Security
and privacy → Mobile and wireless security.
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1 INTRODUCTION
Recent advances in wireless deep learning have now clearly demon-
strated its great potential for applications such as for radio finger-
printing [16] and signal/traffic classification [11, 17–19], among
many others [7]. However, it has been extensively proven that
neural networks are prone to be “hacked” by carefully crafting
small-scale perturbations to the input that are ultimately able to
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“steer” the neural network away from the ground truth. This activ-
ity is also known in literature [2, 5, 9, 14] as adversarial machine
learning (AML). The degree to which malicious wireless agents can
find adversarial examples is critically correlated to the applicability
of neural networks to problems in the wireless domain.

The above reasons clearly show the timeliness and urgency of
a rigorous investigation into the robustness of wireless deep learn-
ing systems. Prior work (see Section 6) is limited by small-scale
simulation-based scenarios, which has left several fundamental
questions unanswered. The key reason that sets AML apart in the
wireless domain is that waveforms are inevitably affected by the
stochastic nature of the channel [4]. This implies that the channel
action must necessarily be factored into the crafting process of
the AML attack. Therefore, the key contribution of this paper is to
provide a comprehensive modeling and experimental evaluation
of adversarial machine learning (AML) attacks to state-of-the-art
wireless deep learning systems.

We summarize our core technical contributions as follows:
•We propose a novel AML threat model (Section 2) where we

consider a “whitebox” scenario (i.e., the adversary has access to
the neural network). The primary advance of our model is that our
attacks are derived for arbitrary channels, waveforms, and neural
networks, and thus generalizable to any state-of-the-art wireless
deep learning system;

• Based on the proposed model, we formulate an AMLWaveform
Jamming (Section 3.1) and an AML Waveform Synthesis (Section
3.2) attack. Next, we propose a Generalized Wireless Adversarial
Machine Learning Problem (GWAP) where an adversary tries to steer
the neural network away from the ground truth while satisfying
constraints such as bit error rate, radiated power, and other relevant
metrics below a threshold (Section 4);

• We evaluate the proposed attacks on (i) a deep learning model
for radio fingerprinting [16] trained on a 1,000-device dataset of
WiFi and ADS-B transmissions collected in the wild; and (ii) a model
[11] trained on the widely-available RadioML 2018.01A modulation
dataset. Our algorithms are shown to decrease the accuracy up to
3x, while keeping the waveform distortion to a minimum.

2 WIRELESS AML MODEL
We use boldface upper and lower-case letters to denote matrices
and column vectors, respectively. For a vector x, 𝑥𝑖 denotes the i-th
element, ∥x∥𝑝 indicates the 𝑙𝑝 - norm of x, x⊤ its transpose, and
x · y the inner product of x and y. For a matrix H, 𝐻𝑖 𝑗 will indicate
the (i,j)-th element of H. The notation R and C will indicate the set
of real and complex numbers, respectively.

System Model. The top portion of Figure 1 summarizes our
system model, where we consider a receiving node 𝑅, an attacker
node 𝐴, and a set L of 𝑁 legitimate nodes communicating with
𝑅. We assume that 𝑅 hosts a target neural network (TNN) used to
classify waveforms coming from nodes in L.
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Figure 1: Overview of AML Waveform Jamming (AWJ) and
AMLWaveform Synthesis (AWS).

Let Λ > 1 be the number of layers of the TNN, and C be the
set of its classes. We model the TNN as a function 𝐹 that maps the
relation between an input x and an output y through a Λ-layer
mapping 𝐹 (x;𝜃 ) : R𝑖 → R𝑜 of an input vector x ∈ R𝑖 to an output
vector y ∈ R𝑜 . The mapping happens through Λ transformations:
r𝑗 = 𝐹 𝑗 (r𝑗−1, 𝜃 𝑗 ) 0 ≤ 𝑗 ≤ Λ, where 𝐹 𝑗 (r𝑗−1, 𝜃 𝑗 ) is the mapping
carried out by the 𝑗-th layer. The vector 𝜽 = {𝜃1, . . . , 𝜃Λ} defines
the whole set of parameters of the TNN. We assume the last layer of
the TNN is dense, meaning that 𝐹Λ−1 (r𝑗−1, 𝜃 𝑗 ) = 𝜎 (W𝑗 · r𝑗−1 + b𝑗 ),
where 𝜎 is a softmax activation function,W𝑗 is the weight matrix
and b𝑗 is the bias vector. Notice that the mapping 𝐹 (x;𝜃 ) : R𝑖 → R𝑜
can be any derivable function, including recurrent networks. We
evaluate the activation probabilities of the neurons at the last layer
of the TNN. Let 𝑐 ∈ C be a generic class in the classification set of
the TNN.We denote 𝑓𝑐 (x) as the activation probability of the neuron
corresponding to class 𝑐 at the output layer of the TNN when input
x is fed to the TNN. It follows that 𝑓𝑐 (x) = 𝐹Λ,𝑐 (rΛ−1, 𝜃Λ).

By taking as reference [11], we assume that the input of the
TNN is a series of I/Q samples received from the radio interface.
We assume that the I/Q samples may be processed through a pro-
cessing function 𝑃 () before feeding the I/Q samples to the TNN.
Common examples of processing functions 𝑃 () are equalization,
demodulation or packet detection.

Threat Model. We assume the adversary 𝐴 may or may not
be part of the legitimate set of nodes in L. We call the adversary
respectively rogue and external in these cases. We consider a white-
box scenario where the adversary 𝐴 has knowledge of the TNN
activation functions 𝐹 𝑗 , meaning that 𝐴 has access to the output
layer 𝐹Λ but also to the weight vector 𝜽 (and thus, its gradient as
a function of the input). The adversary then may choose different
strategies to craft adversarial samples over tuples (x, 𝑦) obtained
from querying the TNN. We leave for future work the investigation
of blackbox scenarios. By referring to prior work, we consider both
targeted [23] and untargeted [9] attacks.

WirelessModel. To be effective, the attacker must be within the
transmission range of 𝑅, meaning that𝐴 should be sufficiently close
to 𝑅 to emit waveforms that compromise (to some extent) ongoing
transmissions between any node 𝑙 ∈ L and 𝑅. This scenario is
particularly compelling, since not only can 𝐴 eavesdrop wireless
transmissions generated by 𝑅 (e.g., feedback information such as

ACKs or REQs), but also emit waveforms that can be received by 𝑅
– and thus, compromise the TNN.

We illustrate the effect of channel action in Figure 1, which can be
expressed through well-established models for wireless networks.
Specifically, the waveform transmitted by any legitimate node 𝐿 ∈
L and received by 𝑅 can be modeled as

zL = xL ⊛ hL +wL, (1)

where xL represents the waveform transmitted by node 𝐿, ⊛ is the
convolution operator; hL and wL are the fading and noise charac-
terizing the channel between node 𝐿 and the receiver 𝑅.

Similarly, let xA be the waveform transmitted by node 𝐴, and let
𝝓 be an attack strategy of𝐴. The attacker utilizes 𝝓 to transform the
waveform xA and its I/Q samples. For this reason, the waveform
transmitted by𝐴 can be written as xA (𝝓). For the sake of generality,
in this section we do not make any assumption on 𝝓. However,
in Section 3 we present two examples of practical relevance (i.e.,
jamming and waveform synthesis) where closed-form expressions
for the attack strategy 𝝓 and xA (𝝓) are derived. The waveform zA
can be written as

zA = xA (𝝓) ⊛ hA +wA . (2)

Without loss of generality, we model h𝑖 as a Finite Impulse Re-
sponse (FIR) filter with 𝐾 > 0 complex-valued taps. Notice that (1)
and (2) do not assume any particular channel model, nor any partic-
ular attack strategy. Therefore, our formulation is very general in
nature and able to model a rich set of real-world wireless scenarios.

3 WIRELESS AML ATTACKS
With the help of Figure 1, we now introduce the AML Waveform
Jamming (Section 3.1), and AML Waveform Synthesis (Section 3.2).

3.1 AML Waveform Jamming (AWJ)
In AWJ, an adversary jams the waveform of a legitimate device
to confuse the TNN. Since the TNN takes as input I/Q samples,
the adversary may craft a jamming waveform that, at the receiver
side, causes a slight displacement of I/Q samples transmitted by the
legitimate device, thus pushing the TNN towards a misclassification.

As shown in Figure 1, the waveform xA generated by the attacker
node𝐴 is aimed at jamming already ongoing transmissions between
a legitimate node 𝐿 and the receiver 𝑅. In this case, the signal
received by 𝑅 can be written as z = zA + zL, where zA and zL are
defined in (1) and (2), respectively.

Attack objectives ad strategies. The attacker aims at comput-
ing xA so that 𝐶 (z) ≠ 𝐶 (z𝐿). Moreover, this attack can be either
targeted (i.e., 𝐴 generates jamming waveforms whose superimpo-
sition with legitimate signals produce 𝐶 (z) = 𝑐𝑇 , with 𝑐𝑇 being
a specific target class in C), or untargeted (i.e., it is sufficient to
obtain 𝐶 (z) ≠ 𝑐𝐿). In the jamming case, x𝐴 (𝝓) = 𝝓. That is, the
transmitted waveform corresponds to the actual attack (jamming)
strategy. Specifically, we have

x𝐴 (𝝓) = (𝜙ℜ𝑛 + 𝑗𝜙ℑ𝑛 )𝑛=1,...,𝑁 𝐽
, (3)

where (i) 𝑎ℑ = Im(𝑎) and 𝑎ℜ = Re(𝑎) for any complex number
𝑎; and (ii) 𝑁 𝐽 > 1 represents the length of the jamming signal in
terms of I/Q samples. Since 𝑁 𝐽 might be smaller than the TNN
input 𝑁𝐼 , we assume that the adversary periodically transmits the
sequence of 𝑁 𝐽 I/Q samples so that they completely overlap with
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legitimate waveforms and have the same length. However, it is
worth to notice that we do not assume perfect superimposition of
the jamming signal with the legitimate signal, and thus, adversarial
signals are not added in a precise way to the legitimate waveform.

Addressing non-stationarity. An adversary cannot evaluate
the channel hL in (1) – which is node-specific and time-varying.
Also, waveforms transmitted by legitimate nodes vary according to
the encoded information, which is usually a non-stationary process.
It follows that jamming waveforms that work well for a given
legitimate waveform zL, might not be equally effective for any
other z′L ≠ zL. Thus, rather than computing the optimal jamming
waveform for each zL, we compute it over a set of consecutive 𝑆
legitimate input waveforms, also called slices.

Let 𝜌 ∈ {0, 1} indicate whether or not the attacker node belongs
to the legitimate node set L (i.e., a rogue node). Specifically, 𝜌 = 1 if
the attacker node is a rogue device and 𝐴 ∈ L, 𝜌 = 0 if the attacker
is external (i.e., 𝐴 ∉ L). Also, let 𝑐𝐿 and 𝑐𝐴 be the correct classes of
the waveforms transmitted by nodes 𝐿 and 𝐴, respectively.

Untargeted AWJ. The adversary aims at jamming legitimate
waveforms such that (i) these are misclassified by the TNN; (ii)
malicious activities are not detected by the TNN; and (iii) attacks
satisfy hardware limitations (e.g., energy should be limited). These
objectives and constraints can be formulated through the following
untargeted AWJ problem (AWJ-U):

minimize
𝝓

1
𝑆

𝑆∑
𝑠=1

[
𝑓𝑐𝐿 (z𝑠 ) + 𝜌 · 𝑓𝑐𝐴 (z𝑠 )

]
(AWJ-U)

subject to BER𝐿 (zs) ≤ BERmax, 𝑠 = 1, 2, . . . , 𝑆 (C1)

∥xA (𝝓)∥22 ≤ Emax, 𝑠 = 1, 2, . . . , 𝑆 (C2)

where z𝑠 = zA + zLs , zLs represents the 𝑠-th slice (or input) of the
TNN; Constraint (C1) ensures that the BER experienced by the le-
gitimate node is lower than the maximum tolerable BER threshold
BERmax; while (C2) guarantees that the energy of the jamming
waveform does not exceed a maximum threshold Emax. In prac-
tice, Constraints (C1) and (C2) ensure that jamming waveforms do
not excessively alter the position of legitimate I/Q samples. This is
crucial to avoid anti-jamming strategies such as modulation and fre-
quency hopping, among others. Although Problem (AWJ-U) takes
into account Constraints (C1) and (C2) only, in Section 4 we extend
the formulation to larger set of constraints. The term 𝜌 𝑓𝑐𝐴 (z𝑠 ) in
Problem (AWJ-U) is crucial to generate jamming waveforms that
hide features of the rogue node known by the TNN.

Targeted AWJ. By defining 𝑐𝑇 ∈ C as the target class, we for-
mulate the targeted AWJ as

maximize
𝝓

1
𝑆

𝑆∑
𝑠=1

[
𝑓𝑐𝑇 (z𝑠 ) −

(
𝑓𝑐𝐿 (z𝑠 ) + 𝜌 · 𝑓𝑐𝐴 (z𝑠 )

) ]
(AWJ-T)

subject to Constraints (C1), (C2)

When compared to Problem (AWJ-U), Problem (AWJ-T) differs
in terms of the objective function. One naive approach would see
the adversary maximize the term 1

𝑆

∑𝑆
𝑠=1 𝑓𝑐𝑇 (z𝑠 ) only. However,

the objective of the adversary is to produce misclassifications, so
the adversary should try to reduce the activation probability of the
jammed class 𝑐𝐿 and adversarial class 𝑐𝐴 , while maximizing the
activation probability for the target class 𝑐𝑇 . It is expected that the

TNN has high accuracy and by simply maximizing 1
𝑆

∑𝑆
𝑠=1 𝑓𝑐𝑇 (z𝑠 )

does not necessarily mean that the TNN would not be able to still
correctly classify transmissions from the legitimate device 𝐿 (i.e.,
the activation probability 𝑓𝑐𝐿 might still be high). In other words,
to effectively fool the TNN, the attacker must generate waveforms
that (i) suppress features of class 𝑐𝐿 ; (ii) mimic those of class 𝑐𝑇 ; and
(iii) hide features of the attacker’s class 𝑐𝐴 . These objectives can be
formulated via the objective function in Problem (AWJ-T).

3.2 AMLWaveform Synthesis (AWS)
In this attack – illustrated in the bottom-right side of Figure 1 –
an adversary 𝐴 transmits synthetic waveforms trying to imitate
features belonging to a target class 𝑐𝑇 . In contrast to the AWJ, in
this case z = zA and synthetic waveforms xA (𝝓) are generated
so that 𝐶 (z) = 𝑐𝑇 and the waveform received by node 𝑅 is still
intelligible. By definition, this attack is targeted only.

Let 𝑐𝑇 ∈ C be the target class. The (targeted) AWS problem
(AWS) is formulated as

maximize
𝝓

1
𝑆

𝑆∑
𝑠=1

[
𝑓𝑐𝑇 (z𝐴𝑠

) − 𝜌 𝑓𝑐𝐴 (z𝐴𝑠
)
]

(AWS)

subject to Constraints (C1), (C2)

This attack maps well to scenarios such as radio fingerprinting,
where a malicious device aims at generating a waveform embedding
impairments that are unique to the target legitimate device [16]. In
other words, the attacker cannot generate random waveforms as in
the AWJ, but should transmit waveforms that contain decodable
information. To this end, FIR filters are uniquely positioned to
address this issue. More formally, a FIR is described by a finite
sequence 𝝓 of𝑀 filter taps, i.e., 𝝓 = (𝜙1, 𝜙2, . . . , 𝜙𝑀 ). For any input
x ∈ X, the filtered 𝑛-th element 𝑥 [𝑛] ∈ x̂ can be written as

𝑥 [𝑛] =
𝑀−1∑
𝑚=0

𝜙𝑚𝑥 [𝑛 −𝑚] (4)

It is easy to observe that by using FIRs, the adversary can ma-
nipulate the position in the complex plane of the transmitted I/Q
symbols. By using complex-valued filter taps, i.e., 𝜙𝑚 ∈ C for all
𝑚 = 0, 1, . . . , 𝑀 − 1, Eq. (4) becomes:

𝑥 [𝑛] =
𝑀−1∑
𝑚=0

(𝜙ℜ𝑚 + 𝑗𝜙ℑ𝑚) (𝑥ℜ [𝑛 −𝑚] + 𝑗𝑥ℑ [𝑛 −𝑚])

= 𝑥ℜ [𝑛] + 𝑗𝑥ℑ [𝑛] (5)

For example, to rotate all I/Q samples by 𝜃 = 𝜋/2 radiants and
halve their amplitude, we may set 𝜙1 = 1

2 exp
𝑗 𝜋2 and 𝜙𝑘 = 0 for all

𝑘 > 1. Similarly, other complex manipulations can be obtained by
fine-tuning filter taps. It is clear that complex FIRs can be effectively
used by the attacker node to fool the TNN through AWS attacks.

By using a FIR 𝝓 with 𝑀 complex-valued taps, the waveform
x𝐴 (𝝓) transmitted by the attacker can be written as

x𝐴 (𝝓) = x𝐵𝐵 ⊛ 𝝓 (6)

where x𝐴 (𝝓) = (𝑥𝐴 [𝑛] (𝝓))𝑛=1,...,𝑁𝐼
, 𝑥𝐴 [𝑛] (𝝓) is computed as in

(5), x𝐵𝐵 = (𝑥𝐵𝐵 [𝑛])𝑛=1,...,𝑁𝐼
is an intelligible signal (e.g., a portion

of a WiFi packet) and 𝝓 = (𝜙ℜ𝑛 + 𝑗𝜙ℑ𝑛 )𝑛=1,...,𝑁𝐼
is the FIR used to

generate a synthetic waveform.
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4 GENERALIZED WAML PROBLEM (GWAP)
Notice that Problems (AWJ-U), (AWJ-T) and (AWS) are similar in
target. Thus, we propose the following Generalized Wireless AML
problem (GWAP) formulation

maximize
𝝓

𝑆∑
𝑠=1

∑
𝑐∈C

𝜔𝑐 𝑓𝑐 (z𝑠 ) (GWAP)

subject to g(z𝑠 ) ≤ 0, 𝑠 = 1, ..., 𝑆 (7)

where g(z) = (𝑔1 (z), . . . , 𝑔𝐺 (z))⊤ is a generic set of constraints
that reflect BER, energy and any other constraint that the attack
strategy 𝝓 must satisfy (e.g., upper and lower bounds); and𝜔𝑐 takes
values in {−𝜌,−1, 0, 1, 𝜌} depending on the considered attack. As
an example, Problem (AWJ-T) has 𝜔𝑐𝑇 = 1, 𝜔𝑐𝐿 = −1, 𝜔𝑐𝐴 = −𝜌
and 𝜔𝑐 = 0 for all 𝑐 ≠ 𝑐𝐿, 𝑐𝑇 , 𝑐𝐴 .

Problem (GWAP) is non trivial since (i) the functions 𝑓𝑐 have no
closed-form and depend on millions of parameters; (ii) both the
objective and the constraints are highly non-linear and non-convex;
(iii) it is not possible to determine the convexity of the problem.
Despite the above challenges, in whitebox attacks the adversary has
access to the gradients of the TNN (Figure 1). In the following, we
show how an attacker can effectively use gradients to efficiently
compute AML attack strategies.

The received waveform is z = z𝐴 + z𝐿 . Since z𝐿 cannot be con-
trolled by the attacker node, we have 𝑓𝑐 (z) = 𝑓𝑐 (z𝐴). Figure 1 shows
that the TNN provides the gradients ∇z 𝑓𝑐 (z), hence the attacker
can compute the gradients ∇𝝓 𝑓𝑐 (z) of the activation probability
corresponding to the 𝑐-th class of the TNN with respect to the
attacker’s strategy 𝝓 by using the well-known chain rule of deriva-
tives. Specifically, the gradients are

∇𝝓 𝑓𝑐 (z) = 𝐽𝝓 (z)⊤ · ∇z 𝑓𝑐 (z) (8)

where 𝐽𝝓 (z) is the 𝑁𝐼 × 𝑀 Jacobian matrix of the input z with
respect to the attacker’s strategy 𝝓, ⊤ is the transposition operator,
and · stands for matrix dot product.

We define the input of the TNN as a set of𝑁𝐼 consecutive I/Q sam-
ples, i.e., z = (𝑧 [𝑛])𝑛=0,...,𝑁𝐼−1, where 𝑧𝑛 ∈ C for all𝑛 = 0, . . . , 𝑁𝐼 −1.
The attacker’s waveform is defined as a sequence of 𝑀 complex
numbers, i.e., x𝐴 (𝝓) = (𝑥𝐴 [𝑚] (𝝓))𝑚=0,...,𝑀−1 whose values depend
on the attack strategy 𝝓. With this information at hand, we observe
the gradient ∇𝝓 𝑓𝑐 (z) has dimension 2𝑀 × 1, while the gradients
with respect to real and imaginary parts of the𝑚-component are

𝜕𝑓𝑐 (z)
𝜕𝜙ℜ𝑚

=

𝑁𝐼∑
𝑛=1

(
𝜕𝑓𝑐 (z)
𝜕𝑧ℜ [𝑛]

𝜕𝑧ℜ [𝑛]
𝜕𝜙ℜ𝑚

+ 𝜕𝑓𝑐 (z)
𝜕𝑧ℑ [𝑛]

𝜕𝑧ℑ [𝑛]
𝜕𝜙ℜ𝑚

)
(9)

𝜕𝑓𝑐 (z)
𝜕𝜙ℑ𝑚

=

𝑁𝐼∑
𝑛=1

(
𝜕𝑓𝑐 (z)
𝜕𝑧ℜ [𝑛]

𝜕𝑧ℜ [𝑛]
𝜕𝜙ℑ𝑚

+ 𝜕𝑓𝑐 (z)
𝜕𝑧ℑ [𝑛]

𝜕𝑧ℑ [𝑛]
𝜕𝜙ℑ𝑚

)
. (10)

From (2), (3) and (6), we have that the gradients for AWJ and
AWS attacks can be computed respectively as

𝜕𝑧𝑍
′ [𝑛]

𝜕𝜙𝑍
′′

𝑚

= ℎ𝐴𝑛−𝑚 [𝑛] (11)

and
𝜕𝑧𝑍

′ [𝑛]
𝜕𝜙𝑍

′′
𝑚

=

𝐾−1∑
𝑘=0

ℎ𝐴𝑘
[𝑛]

(
𝑀−1∑
𝑚=0

𝑥𝐵𝐵 [𝑛 −𝑚 − 𝑘]
)
. (12)

If compared to fast gradient sign methods (FGSM) [3] (where
adversarial inputs are tailored for a specific input and channel
condition), we take into account multiple inputs to find a single FIR
filter that can synthesize many adversarial inputs that are effective
against multiple channel conditions.

Due to space limitations, we omit the detailed solution of Prob-
lem GWAP which, however, consists in relaxing C1 and C2 via
Lagrangian Duality and applying the Non-linear Conjugate Gradi-
ent (NCG) method [16] to iteratively compute the attack solution.

5 EXPERIMENTAL RESULTS
We first describe the datasets and learning architectures in Section
5.1, followed by the results for AWJ (Section 5.2), AWS (Section 5.3).

5.1 Datasets and Learning Architectures
5.1.1 Radio Fingerprinting. We consider (i) a dataset of 500 devices
emitting IEEE 802.11a/g (WiFi) transmissions; and (ii) a dataset of
500 airplanes emitting Automatic Dependent Surveillance – Broad-
cast (ADS-B) beacons1. ADS-B is a surveillance transmission where
an aircraft determines its position via satellite navigation. For the
WiFi dataset, we demodulated the transmissions and trained our
models on the derived I/Q samples. To demonstrate the generality
of our AML algorithms, the ADS-B model was instead trained on
the unprocessed I/Q samples. We use the CNN architecture in [20],
where the input is an I/Q sequence of length 288, followed by two
convolutional layers (with ReLu and 2x2 MaxPool) and two dense
layers of size 256 and 80. We refer to the above CNN models as
RF-W (WiFi) and RF-A (ADS-B) TNN architectures.

5.1.2 Modulation Classification (MC). Weuse the RadioML 2018.01A
dataset, publicly available for download at http://deepsig.io/
datasets. The dataset is to the best of our knowledge the largest
modulation dataset available, and includes 24 different analog and
digital modulations generated with different levels of signal-to-
noise ratio (SNR). Details can be found in [11]. For the sake of
consistency, we also consider the neural network introduced in
Table III of [11], which presents 7 convolutional layers each fol-
lowed by a MaxPool-2 layer, finally followed by 2 dense layers and
1 softmax layer. The dataset contains 2M examples, each 1024 I/Q
samples long. In the following, this model will be referred to as the
MC TNN architecture. We considered the same classes shown in
Figure 13 of [11]. Confusing classes in Fig. 3 (𝜖 = 0.2) of our paper
and Figure [11] in are the same (i.e., mostly M-QAM modulations).
Notice that 𝜖 = 0 corresponds to no attack.
5.1.3 Data andModel Setup. For each architecture and experiment,
we have extracted two distinct datasets for testing and optimiza-
tion purposes. The optimization set is used to compute the attack
strategies 𝝓 as shown in Sections 3 and 4. The computed 𝝓 are then
applied to the testing set and then fed to the TNN. To understand
the impact of channel conditions, we simulate a Rayleigh fading
channel with AWGN noise h𝐴 that affects all waveforms that node
𝐴 transmits to node 𝑅. We consider high and low SNR scenarios
with path loss equal to 0dB and 20dB, respectively. Moreover, we
also consider a baseline case with no fading. To train our neural
networks, we use an ℓ2 regularization parameter 𝜆 = 0.0001. We

1Due to stringent contract obligations, we cannot release these datasets to the commu-
nity. We hope this will change in the future.
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Figure 2: Accuracy of (a)MCTNN (originally 60%) and (b) RF-
WTNN (originally 40%) under the AWJ-U attack for different
jamming lengths and 𝜖 values.

also use an Adam optimizer with a learning rate of 𝑙 = 10−4 and
categorical cross-entropy as a loss function. All architectures are im-
plemented in Keras. Since all datasets are static, we cannot present
results on BER values whose study will be the focus of future work.

5.2 AML Waveform Jamming (AWJ) Results
5.2.1 Untargeted AWJ (U-AWJ). Figure 2(a) shows the accuracy of
the MC TNN (original accuracy of 60%) under the AWJ-U attack,
for different channel conditions h𝐴 , jamming waveform length 𝑁 𝐽
and 𝜖 values. Figure 2 shows that the adversary always reduces the
accuracy of the TNN even when 𝑁 𝐽 and 𝜖 are small. We notice that
high SNR fading conditions allow the adversary to halve TNN’s
accuracy, while the best performance is achieved in no-fading con-
ditions where the attacker can reduce TNN’s accuracy by 3x.

Figures 3 and 4 show the confusion matrices and the correspond-
ing accuracy levels of the AWJ-U attack to the MC TNN model in
the low SNR regime. Here, increasing 𝜖 also increases the effective-
ness of the attack, demonstrated by the presence of high values
outside the main diagonal of the confusion matrix.

Figure 2(b) shows the accuracy of the RF-W TNN for different
attack strategies, constraints and fading conditions. To better un-
derstand the impact of AWJ-U, we have extracted the 10 least (i.e.,
Bottom 10) and most (i.e., Top 10) classified devices out of the 500
devices included in the WiFi dataset. Interestingly, AWJ-U attacks
are extremely effective when targeting the top devices. In some
cases, the attacker can drop the accuracy of these devices from 70%
to a mere 20% in the high SNR regime. Since the bottom 10 devices
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Figure 3: Confusion matrix of MC
TNN under the AWJ-U attack in low
SNR regime for different 𝜖 values.
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of MC TNN in Fig. 3
(originally 60%).

are classified with a low accuracy already, it takes minimal effort
to alter legitimate waveforms and activate other classes.
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Figure 5: (top) Fooling matrix of MC TNN under AWJ-T for
𝑁 𝐽 and 𝜖 values; (bottom) Fooling matrix of RF-W TNN un-
der AWJ-T for different 𝜖 values and no fading.

5.2.2 Targeted AWJ (AWJ-T). Compared to untargeted jamming,
AWJ-T requires smarter attack strategies as the adversary needs to
(i) jam an already transmitted waveform, (ii) hide the underlying
features of the jammed waveform and (iii) mimic those of another
class. The top portion of Figure 5 show the fooling matrices of
AWJ-T attacks against MC TNN. Notice that the higher the fooling
rate, the more successful the attack is. We notice that the adversary
is able to effectively target a large set of modulations from 1 to 17
and 24 (i.e., OOK, M-QAM, M-PSK, ASK). However classes from
18-23 (i.e., AM, FM and GMSK) are hard to be targeted and show
low fooling rate values. The bottom portion of Figure 5 shows the
results concerning the AWJ-T attack against RF-W TNN.

5.3 AML Waveform Synthesis (AWS) Results
Let us now evaluate the performance of AWS attacks in the case
of rogue nodes. In this case, the attacker strategy 𝝓 consists of𝑀
complex-valued FIR taps (Section 3.2) that are convoluted with a
baseband waveform x𝐵𝐵 . To simulate a rogue device, we extract
x𝐵𝐵 from the optimization set of the rogue class. This way we can
effectively emulate a rogue class that needs to hide its own features
and imitate those of the target classes.

Figure 6 depicts the fooling matrices of AWS attacks against
the RF-W TNN. We notice that (i) increasing the number of FIR
taps increases the fooling rate; and (ii) the bottom classes (1-10)
are the ones that the attacker is not able to imitate. However, the
same does not hold for the top 10 classes (11 to 20), which can
be imitated with high probability (i.e., 28%, 35%, 62% for classes
11,15,20, respectively). Figure 6 gives us an interesting insight on
AWS attacks as it shows that the attacker is unlikely to attack those
classes that are misclassified by the TNN.
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Figure 6: Foolingmatrix of RF-WTNN under AWS for differ-
ent values of𝑀 (𝑀 = 4: top;𝑀 = 8: bottom).

The same behavior is also exhibited by the RF-A TNN. Figure 7
shows the fooling matrix when 𝜖 = 0.5 and𝑀 = 4. Our results show
that the attacker is not able to properly imitate classes 1-10 (i.e., the
bottom classes). Classes 11-20 (i.e., the top classes) can instead be
imitated to some extent. This is because it is unlikely that a unique
setup of 𝜖 and𝑀 will work for all classes (both rogue and target).

Case A
(A = 11, T = 14 ) Case B

(A = 15, T = 17 )

Figure 7: Fooling matrix of RF-A (original accuracy 60%)
TNN under AWS with𝑀 = 4 and 𝜖 = 0.5.

6 RELATED WORK
Szegedy et al. [23] first pointed out the existence of targeted adver-
sarial examples: given a valid input 𝑥 , a classifier 𝐶 and a target
𝑡 , it is possible to find 𝑥 ′ ∼ 𝑥 such that 𝐶 (𝑥 ′) = 𝑡 . More recently,
Moosavi-Dezfooli et al. [9] have further demonstrated the existence
of so-called universal perturbation vectors, such that for the majority
of inputs 𝑥 , it holds that 𝐶 (𝑥 + 𝑣) ≠ 𝐶 (𝑥). Carlini and Kruger [2]
evaluated a series of adversarial attacks that are shown to be effec-
tive against defensive neural network distillation [15]. Although
the above papers have made significant advances, they can only
be applied to stationary learning contexts such as computer vision.
The presence of non-stationarity makes wireless AML significantly
more challenging and thus worth of additional investigation.

Only very recently has AML been approached by the wireless
community [13]. Adversarial attacks for modulation classification
systems is studied in [1], [6], and [8]. Shi et al. [22] propose the
usage of a generative adversarial network to spoof a targeted de-
vice. However, the evaluation is only conducted through simulation
without real dataset. Sadeghi et al. [21] proposed two AML algo-
rithms based on a variation of the fast gradient methods [5] and
tested on the 11-class RadioML 2016.10A dataset [12] and with the
architecture in [10]. In this paper, we instead consider the much
larger RadioML 2018.01A dataset [11], which has 24 classes.
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