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ABSTRACT
We present a novel semi-supervised framework for training classi-
fiers and simultaneously detecting out-of-distribution inputs. We do
this by training on an closed classification dataset and an auxiliary
simulated-open dataset, which consists of examples from outside
the closed set. Through unsupervised learning and incorporating a
class-distance value for each known class, we can identify out-of-
distribution RF devices with state-of-the-art accuracy. We define
metrics for quantifying robustness in terms of both classification
and Open Set Recognition (OSR). Finally, we discuss uncertainty
estimation and calibrate our open set predictions so that they rep-
resent confidence.
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1 INTRODUCTION
Current classification models are usually trained to classify a set
of known classes represented in the training set. However, in an
open world setting, data also contains unknown examples from
out-of-distribution classes. This presents a challenge to existing
models since this "open set" of classes will be classified incorrectly
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Figure 1: Effect of the unsupervised loss on the learnedOpen
vs. Closed decision boundary in a latent space learned on
a toy RF dataset. Blue points are closed, and red points are
open. The decision boundary in the latent space is shaded
from blue to red with respect to the openness score. On the
left we show the result without the unsupervised loss, while
the result using the unsupervised loss is shown on the right.

as one of the known classes, often with a high degree of certainty.
In some operational settings, it is critical for classification models
to have a notion of the unknown unknowns in order to enable
autonomous systems and incremental learning of new classes.

Numerous works have addressed the open set recognition prob-
lem using a diverse set of approaches such as the Compact Abating
Probability (CAP) models [21]; exploiting the soft-max probabili-
ties [8]; using auxiliary datasets for outlier exposure [6], [9]; gen-
erating confidence scores from a generative classifier [11]; class-
conditioned auto-encoders [15]; and adversarial learning [4].

Contribution. In this work, we present a general approach
for open-set recognition (OSR) which we call Unsupervised Class-
Distance Learning (UCDL). We discuss new findings regarding OSR
and uncertainty. We build on the idea introduced in [9] and use an
auxiliary dataset, containing only open classes to promote learning
a decision boundary between the closed and open sets. Specifically,
we propose to jointly train two classifiers: one classifier is trained
to solve the standard classification task (the known classes), while
the second binary classifier is trained in a supervised fashion to
classify closed vs open samples using both learned features and
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their distances to the known classes. This enforces a partition of
the feature space into closed and open regions. In addition, we
propose to use a task-dependent unsupervised loss to encourage
the model to learn general representations that can be leveraged
for incremental learning of novel classes. We compare our model
to traditional approaches, and report results on computer vision
benchmarks as well as on a dataset composed of Radio Frequency
(RF) emissions of Internet of Things (IoT) devices, made available by
the DARPA Radio Frequency Machine Learning Systems (RFMLS)
program.

2 RELATEDWORK
There is a significant amount of existing literature regarding the
open-set recognition problem. We highlight two major groups of
methods and describe ours with respect to them.

Statistical methods fit the probability distribution of closed
samples in a learned space to quantify the likelihood that a novel
sample came from any of the known classes. These have found
success through leveraging extreme value theory, which highlights
the long-tailed nature of these closed-open distributions. The most
notable of these approaches is OpenMax [2], which fits a Weibull
distribution on the correctly classified softmax outputs. Similarly,
Class Anchor Clustering [13] encourages clusters to form in the
classifier outputs, which further separates the open samples from
the closed ones. Another example is from [8], where they similarly
look at the classification confidence distribution for closed vs. open
samples.

Subspace methods learn the subspaces occupied by closed and
open samples in a feature space. Network Agnostophobia [6] lever-
ages the fact that open samples land near the origin in feature space
and encourages this behavior on a sample dataset of open classes,
showing that it transfers appropriately onto truly novel data. A dis-
advantage of this approach is that separability of open-set classes is
not possible. In [19], a self-supervised domain adaptation method
was used to promote clustering in feature space and to promote a
better understanding of the closed vs. open subspace. The approach
presented in [22] finds atypical samples across all closed classes
and use those to represent the open set.

Quantifying uncertainty allows amodel to predict a statistically-
meaningful probability that a given input comes from an open
set distribution or not. Platt Scaling [16] and its applications to
other supervisedmodels [14] includingmodern neural networks [7],
provides a method to calibrate the outputs of a neural network’s
softmax to produce meaningful confidence scores. Furthermore,
a model can learn to predict Aleatoric and Epistemic uncertain-
ties [10] for a specific input and for themodel itself. Finally, Smoothed
Classifiers [5] and [20] provide methods to certify radii of robust-
ness to Gaussian noising of the input-space for a given model.

Ourmodel, UCDL, consolidates statistical and subspace approaches
by providing both the feature vector as well as the distances to class
centroids to an open set recognition module. This allows the net-
work to learn the open/closed subspaces as well as the class-distance
decision boundaries. Furthermore, by providing all of this in a sin-
gle learned framework, we have the opportunity to quantify OSR
uncertainty.

Figure 2: Diagram of our UCDL method with a feature ex-
tractor, learned latent space, and three task-specific network
heads. Closed-set classification accomplished via a classifica-
tion head that takes as input both the latent features from
the network encoder and the features’ distances to all the
class centroids. The open set prediction branch takes as in-
put both the latent features as well as the pairwise distance
between each the data samples and all class prototypes. To
encourage better feature extraction, a task-specific unsuper-
vised task is incorporated as a third branch in the network.

3 APPROACH
3.1 RF Fingerprints
Here, we provide a summary of our approach on the RF datasets.
The reader is referred to [12] for further details. Ideally, the signal
transmitted by a wireless device can be expressed as

𝑥 (𝑡) = 𝑅𝑒

(
𝐴
(
ℎ𝑟𝑒 ∗ 𝑎𝑟𝑒 (𝑡) 𝑐𝑜𝑠 (𝜔 (𝑡))

+ 𝑗ℎ𝑖𝑚 ∗ 𝑎𝑖𝑚 (𝑡) 𝑠𝑖𝑛 (𝜔 (𝑡))
)
𝑒 𝑗2𝜋 𝑓𝑐𝑡

)
, (1)

where ℎ𝑟𝑒 and ℎ𝑖𝑚 are the impulse responses of the in-phase
and quadrature reconstruction filters that make up the Digital-
to-Analog Converter (DAC), 𝑎(𝑡) is the modulated digital signal
amplitude, 𝑓𝑐 is the carrier frequency, and 𝐴 is the gain of the
power amplifier. At the receiver, the signal can be modeled as
𝑟 (𝑡) = 𝑥 (𝑡) ∗ ℎ𝑐 + 𝜂 (𝑡), where ℎ𝑐 is the complex-valued impulse
response of the propagation channel, ∗ denotes the convolution
operator, and 𝜂 (𝑡) is a Gaussian noise component ∼ CN(0, 𝜎2𝑛).

It is well known that hardware imperfections cause the trans-
mitted signal to deviate from its ideal representation, and this fact
can be exploited for device identification, even when the device
population contains many devices that are nominally identical. We
exploit this physical difference between devices by recognizing that
the DAC reconstruction filters are usually realized as relatively low-
order analog filters. Therefore, we assume that the device-specific
discriminative features occupy a low-dimensional subspace, accord-
ing to the findings in [17].

3.2 Processing RF Data
Since digitized RF signals can be viewed as a time series, we employ
sequence processing techniques to obtain a significant processing
gain. We achieve this by exploiting the fact that a single device will
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transmit several bursts of data while attempting to gain access to a
network. Here, a burst refers to the transmission of a data message.
Let 𝑿 ∈ C𝑀×𝑛 be the data matrix with rows representing𝑀 non-
overlapping time windows of data from the same device, where
each row 𝒙𝑖 ∈ C𝑛 . From each 𝒙𝑖 we obtain a corresponding latent
representation 𝒛𝑖 ∈ C𝑑 , with 𝑑 < 𝑛. The𝑀 latent representations
should therefore be identical, and we denote this common latent
vector as 𝒛. We can then model 𝒛𝑖 |𝒙𝑖 = 𝒛 + 𝜼𝑖 , where 𝜼𝑖 is a zero-
mean Gaussian noise component. That is, the latent representation
of each sequence element is a noisy observations of a sequence-level
representation, 𝒛, which we use for device classification.

We leverage this sequence-based processing scheme for unsu-
pervised learning by constraining each sequence to contain only
data from the same burst, so we process data one burst at a time.
With this construction, we assume that any two signal bursts drawn
from the unlabeled dataset belong to different devices with high
likelihood, and we compute a contrastive loss between pairs of
bursts as follows,

L𝑖 𝑗 = ∥ 𝑓 (𝑿𝑖 ) − 𝑓 (𝑷𝑿𝑖 )∥2𝐹 − ∥ 𝑓 (𝑿𝑖 ) − 𝑓
(
𝑿 𝑗

)
∥2𝐹 , (2)

where 𝑓 (·) is the neural network encoder, 𝑷 is a row permutation
matrix, and𝑿𝑖 and𝑿 𝑗 are the data matrices for two different signal
bursts.

3.3 Open Set Recognition Datasets and Metrics
In order to train the joint tasks of traditional classification and
open set recognition, we split the data into three disjoint groups of
classes - closed classes, sim-open classes, and true-open classes. The
closed datasets have a class label 𝑐 and openness label 0, while the
open datasets have no class label and openness label 1. This data is
easy to obtain, as many tasks have small labeled datasets and large
unlabeled datasets, which we simply relabel as closed and open.
We use only the closed classes to learn the traditional classification
task but use both the closed and simulated-open classes to learn
the OSR task. We then analyze generalization to novel devices on
the true-open classes. We note that using the unlabeled dataset as
sim-open may result in noisy labels, as some unlabeled examples
may actually come from the closed set. This is can be overcome
however, by enforcing that the openness predictions represent
open/closed confidences, as is shown in the results section. We
can also apply noisy learning techniques that exploit quantifiable
feature consistency such as in [18].

Furthermore, we define metrics that fully describe the efficacy
of an open set recognition model. With the introduction of out-of-
distribution samples, it is no longer sufficient to simply return the
accuracy on the closed set, as one could classify a sample correctly
but mis-identify it as open. Therefore, we use the following metrics:
the traditional class accuracy (ACCtraditional) represents the percent
of closed samples that are correctly classified. The amended class
accuracy (ACCamended), however, indicates the percent of closed
samples that are both correctly classified and identified as closed.
The false positive rate (FPR) the percent of closed samples that are
falsely identified as open. The true positive rate (TPR) the percent
of true open samples that are correctly identified as open. Note
that each metric is constrained to just one of the dataset splits.
The ACCamended, FPR, and TPR are calculated with respect to an

openness threshold, which is a binary decision boundary on the
network’s openness predictions. We determine the optimal thresh-
old using the train set, and then apply it onto the evaluation set.
We posit that an effective OSR method must obtain both a high
amended class accuracy, a high TPR, and a low FPR.

3.4 Network Architecture
Our network architecture is inspired by the realization that the open
set recognition problem can be easily tied to the new developments
in semi-supervised learning. Namely, we have a labeled closed
dataset and plentiful unlabeled data that we may define as open.
By assigning openness values onto the unlabeled data, we now
have a way to simultaneously supervise open set recognition and
semi-supervise closed set classification.

With this in mind, we construct our network to perform both
traditional classification as well as open set recognition in one
forward pass, training both tasks in a single learned space. We
train on input batches that are half-closed and half-simulated-open.
These pass through a convolutional feature extractor that extracts
relevant latent information. To incorporate distance-based methods,
we obtain centroids for each class in this feature space and ensure
that our feature vector corresponds to one of these centroids.

We provide these latent representations to a classifier that pro-
duces a softmax over the closed classes, an openness predictor that
produces a scalar in the range of [0, 1], and an unsupervised head
that encourages better feature extraction. In the case of the open-
ness predictor, we feed it both the feature embedding as well as the
distance of these features to every class centroid, so that it may
perform both subspace and distance-based OSR.

During training, we do not let the feature extractor receive gradi-
ents from the open set recognition head. We found that supervising
the feature extraction on the closed and simulated open samples
results in heavy overfitting towards only the sim-open classes being
recognized as open. For this reason, we use an unsupervised loss to
encourage learning on the simulated open data without overfitting
to the fact that it is open.

Lastly, we employ Platt scaling [16], to recalibrate the openness
predictions as described in 4.2 to ensure that the openness scalars
represent the network’s open-set confidence.

4 RESULTS
4.1 RF Fingerprinting Datasets
We report results on RF fingerprinting for a baseline experiment,
as well as for several experiment sweeps. The architecture here is
a complex-valued convolutional network as proposed in [12]. We
use a contrastive loss for the unsupervised task, where samples of
the same class are encouraged to attract and samples from different
classes are encouraged to repel. Data augmentation was applied
during training as discussed in Section 4.3. The baseline for com-
parison contains 100 closed wifi classes with 200 bursts per class,
100 sim-open classes with 200 bursts per class, and 400 true-open
classes with 30 examples per class. All RF experiments have these
default dataset sizes unless a modification is otherwise specified.

In Table 1, we highlight our RF fingerprinting OSR results. The
principal findings are that OSR performance improves with higher
sim-open class sampling, but that this improvement may make
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Experiment Group Experiment Parameter ACCtraditional ACCamended

at threshold 0.5 TPR FPR

Baseline N/A 89.7% 75.7% 81.5% 15.6%

With and without class
distances and unsup. loss

Only class-distances 88.9% 74.5% 82.8% 17.2%
Only unsup. loss 89.5% 76.8% 68.5% 15.0%

Neither 88.3% 77.8% 66.4% 13.2%

Sweep over number of
sim-open classes

20 86.4% 81.7% 63.5% 7.9%
50 87.5% 80.4% 75.9% 10.8%
200 85.6% 76.8% 83.4% 13.8%

Table 1: Multiple ablation studies against the baseline described in 4.1. These show that an improved separation for TPR−FPR
may lead to a slightly lower ACCamended, as the network begins to favor labeling samples as open. We also see the effect that
the unsupervised and class-distance vectors have on both the open and closed set performance. Obtaining a balance between
the TPR and FPR requires a roughly even number of classes in the closed and sim-open datasets.

Figure 3: Top row: uncalibrated reliability diagrams of open-
ness predictions for UCDL models without and with simu-
lated SNR augmentation as described in 4.3. Bottom row: re-
liability diagrams for openness predictions after Platt scal-
ing calibration as described in 4.2. Left column: UCDLmodel
trained without SNR augmentation. Right column: UCDL
model trained with SNR augmentation. The x-axes corre-
spond to output confidence and the y-axis corresponds to
what proportion of the samples were open.

the network more trigger-happy to call samples open. We also see
that both the unsupervised and the class-distance are helpful for
improving open set recognition performance.

Finally, we calibrate our openness scores with Platt Scaling on a
model trained on 30 examples per each of the 100 closed classes and
200 simulated open classes with 400 examples each. We find that
Platt Scaling qualitatively makes the openness reliability diagrams
more diagonal and therefore more interpretable as confidences.
UCDL trained with simulated SNR augmentation and Platt calibra-
tion is less overconfident with its openness scores. SNR augmen-
tation and Platt calibration also each reduce the openness binary
cross-entropy as shown in Table 2.

Calibration No SNR
Augmentation

SNR
Augmentation

Before Platt Scaling 0.683 0.571

After Platt Scaling 0.441 0.437

Table 2: Binary cross-entropy loss of predicted openness
scores before and after Platt Scaling, with and without SNR
augmentation during model training.

4.2 Calibrating Openness
As shown in [7], modern neural networks are not well-calibrated,
i.e. the outputs of their final classification layers tend to be severely
overconfident and need to be calibrated. Hence, we verify similar
results for our OSR RF models and calibrate the openness scores
using Platt Scaling [16]. We find that while the reliability diagrams
of the openness scores from theOSRmodel aren’t perfectly diagonal,
they are not as severely overconfident as found in [7].

Figure 3 shows the uncalibrated reliability diagrams from a sam-
ple of the eval set such that the number of open samples is the same
as the number of closed samples, and the number of open samples
is half simulated open and half true open. We find that the model
trained with SNR data augmentation as described in Section 4.3
has a qualitatively better reliability diagram that is more diagonal
and has more monotonicity. We next apply Platt Scaling [16] to
calibrate the openness scores of both models. Qualitatively, we
verify that the Platt Scaling improves the diagonalization of the
reliability diagram. The model trained with SNR augmentation ob-
tains the least overconfidence after calibration. Quantitatively, Platt
Scaling reduces the binary cross-entropy of openness predictions,
and the model trained with SNR augmentation also has a lower
binary cross-entropy in Table 2.

4.3 Robustness of RF Openness
Data augmentation is frequently used during training to improve in-
ference accuracy and robustness to perturbations of the input space.
In the RF domain, works including [1], [12], [3] have demonstrated
the importance of adding data augmentation for inference-time
accuracy. We show these augmentations also help with OSR ac-
curacy. Specifically, we simulate noise in the data, as described in
Section 3.1, by adding white Gaussian noise (AWGN). We estimate
the power of the signal as the total power of the non-augmented
signal to estimate a signal-to-noise (SNR) ratio of the output signal.
This SNR representation allows better interpretation of results than
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Figure 4: Uncalibrated smoothed openness scores for ex-
amples from closed, simulated open, and true open distri-
butions. Models trained with simulated SNR augmentation
(top plot) have robust openness scores over a wider range of
SNRs than their non-augmented counterparts (bottom plot).
For each value of simulated SNR as described in 4.3, sam-
ples from the three distributions are applied with multiple
instantiations of artificial SNR, and each sample’s openness
scores is averaged over the set of applied simulated SNRs. On
the top are the results of the OSR model with no SNR aug-
mentation during training. Results for the OSR model with
SNR augmentation during training are on the bottom.

a noise variance representation for extending robustness results a
la [5] and [20].

We perform an A/B test on the experiment of 30 closed exam-
ples per class and 200 sim-open classes from 1. To one model we
apply only center frequency offset and channel augmentations, as
described in [12], [3], to our OSR RF model with unsupervised loss,
while to the other model we also augment with AWGN to produce
an artificial estimated SNR within the range of 5dB to 50dB with a
uniform distribution in dB-space.

Figure 4 shows that AWGN augmentation leads to openness
scores that are robust over a wider range of SNR values. Once
the added noise pushes SNR below a level that can be handled by
the OSR model, 30dB in the non-augmented case and 0dB in the
augmented case, the openness scores have a strong bias towards
0. This is counterintuitive, for very noisy data would be expected
either to tend towards 0.5 or towards 1 from an entropic standpoint.

However, since we don’t have the model learn to connect entropy
of the input and output spaces, there’s no reason we would expect
those entropies to be correlated, and the model is likely correlating
with an imbalance in the training sets.

5 CONCLUSION
In this work we discussed existing methods for open set recogni-
tion and proposed a cohesive approach to consolidate them in a
single learned subspace. By re-framing unlabeled data as open, we
supervise an open set recognition network while also encouraging
robust feature extraction with class centroids and an unsupervised
loss. Furthermore, by learning the open subspace and its distance to
every known class, we can qualitatively and quantitatively analyze
open set uncertainty.
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