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ABSTRACT
Steganography has received a great deal of attention within the
information security domain due to its potential utility in ensuring
network security and privacy. Leveraging advancements in deep
neural networks, the state-of-the-art steganography models are
capable of encoding a message within a cover image and producing
a visually indistinguishable encoded image from which the decoder
can recover the original message. While a message of different data
types can be converted to a binary message before encoding into a
cover image, this work explores the ability of neural networkmodels
to encode data types of different modalities. We propose the ERS-
GAN (Encrypted Rich-data Steganography Generative Adversarial
Network) - an end-to-end generative adversarial network model
for efficient data encoding and decoding. Our proposed model is
capable of encoding message of multiple types, e.g., text , audio and
image, and is able to hidemessage deeply into a cover imagewithout
being detected and decoded by a third-party adversary who is not
given permission to access the message. Experiments conducted on
the datasetsMS-COCO and Speech Commands show that our model
out-performs or equally matches the state-of-the-arts in several
aspects of steganography performance. Our proposed ERS-GAN can
be potentially used to protect the wireless communication against
malicious activity such as eavesdropping.

CCS CONCEPTS
• Security and privacy→ Human and societal aspects of security
and privacy; Privacy protections;

KEYWORDS
steganography, neural networks, machine learning

ACM Reference Format:
Dule Shu,Weilin Cong, Jiaming Chai, and Conrad S. Tucker. 2020. Encrypted
Rich-data Steganography using Generative Adversarial Networks. In ACM
Workshop on Wireless Security and Machine Learning (WiseML ’20), July

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WiseML ’20, July 13, 2020, Linz (Virtual Event), Austria
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8007-2/20/07.
https://doi.org/10.1145/3395352.3402626

13, 2020, Linz (Virtual Event), Austria. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3395352.3402626

1 INTRODUCTION
Wireless communication networks are used to transmit a consider-
able amount of private information. Due to the broadcast nature
of wireless communications, eavesdropping attacks often choose
wireless networks as a target. Although security measures such as
cryptography and friendly jamming prevent direct eavesdropping
on the communication, eavesdroppers can still infer messages using
alternative techniques such as time analysis, dictionary attacks to
break cryptographic keys, and signal cancellation to remove the
impact of friendly jamming signals [4]. In case an eavesdropper
successfully acquires the targeted messages in the wireless network,
a second layer mechanism is needed to protect the secrecy of users’
communication. In addition, the fast-emerging Low Probability of
Intercept / Detection (LPI/LPD) communication requires messages
to be securely and efficiently encoded such that the wireless com-
munication activity remains secretive to a third-party adversary
node [25]. One possible solution to enhancing the privacy of wire-
less communication is steganography. In general, steganography
refers to the practice of concealing a piece of information in another
piece of information. For example, in image-based steganography,
a message is encoded in an image named the cover image before
sent to the receiver. When an eavesdropper obtains a cover image
containing an encoded message, he or she will consider the image
as a regular image and be unaware of the encoded message unless a
proper steganalysis on the image is taken. Steganography can also
potentially be used for LPI/LPD communication for wireless net-
works, where, instead of hiding the communication activity, it hides
the actual information being transmitted by showing the cover im-
ages as the apparent information being transmitted. Motivated by
the potential utility of steganography in enhancing the privacy of
wireless communication, we propose a deep neural network model
for image-based steganography. Our model allows different types
of message to be encoded by a cover image without increasing
the file size of the image, which increases the efficiency of data
transmission at a node.

In image-based steganography, an encoded message is converted
to some sufficiently small perturbations of the pixel values of a
cover image. The perturbed image (named the stego image) remains
visually identical to the original image. If a mapping from the stego
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Figure 1: Steganography using cover image.

image to the message is obtained, a secure transmission of the se-
cret message can be achieved. A mapping between a cover image, a
message and a stego image using message as pixel perturbation is
shown in Fig. 1. The successes in using autoencoders to encode in-
formation [8][1][11] and the successes in using adversarial models
to synthesize realistic data [5][6] have motivated the use of neu-
ral network models for image-based steganography. In particular,
Hayes et al. [7] proposes a neural network model that transmits en-
crypted random message using a cover image. The model consists
of three modules: an encoder module that encodes the message into
the cover image, a decoder module that decodes the message from
the stego image, and an adversary module that implements adver-
sarial training of the network model for performance improvement.
The random message can be recovered via decryption from the out-
put of the decoder. A similar model for image-based steganography
is proposed by [27]. This model follows the three-module design of
[7], and introduces a extra noise layer between the encoder and the
decoder to mimic the noise in stego image transmission. The model
is shown to have robustness in decoding accuracy in the presence
of noise.

The two aforementioned models choose random binary data
with limited length as the secret message. Although in general,
a message of different data types can be converted to a binary
message before encoded into a cover image, it is possible that there
exists a more efficient way of message encoding for steganography.
Since artificial neural networks have been widely used to learn
the representations of different data types such as text [26], audio
[15], image [2] and video [24], we choose to use a neural network
model as an autoencoder for efficient and versatile featurization. By
combining the autoencoder for message featurization and a neural
network model for steganography, we propose the Encrypted Rich-
data Steganography Generative Adversarial Network - a new end-
to-end trainable generative adversarial network for image-based
steganography. Our model adopts the general structure proposed
in [27], but is capable of transmitting multiple types of message
ranging from text, audio to image. In order to improve secrecy, we
include an encryption module and a decryption module inside our
encoder and decoder, respectively. This design preserves the secrecy
of the encoded message even if the stego image from our model has
been detected by a steganalysis method, as the decryption key is
not contained in the model. We demonstrate the performance of our
model via numerical experiments. A comparison between ourmodel
and some other existing approaches shows that our model has
similar or higher performance in several aspects of steganography

performance. The contributions of our work are summarized as
follows.
• Wepropose an image-based steganographymodel that works
with multiple types of message data, from text, audio and
image.
• Our model introduces a more efficient and versatile message
encoding method to improve the capacity of steganography.
• We achieve improved level of secrecy using built-in encryp-
tion and decryption modules in our model.
• We report evaluation result of message decoding accuracy by
human observers in an experiment involving human partici-
pants. To the best of our knowledge, such type of evaluation
has not yet been reported by other state-of-the-art works in
image-based steganography.

The rest of this paper is organized as follows. In Section 2, we
review related works to image-based steganography and explain
the difference between our model and some other state-of-the-art
models. In Section 3, we provide formal formulation of the image-
based steganography problem and our proposed solution. We show
the experiment results in Section 4. Section 5 concludes the main
points of the paper and discusses future work.

2 RELATEDWORKS
2.1 Steganography
A wide variety of steganography methods have been proposed in
recent years, which can be categorized into three types: Least-
Significant Bit algorithm, Content-Adaptive algorithm, and DL
Steganography algorithm.

The Least-Significant Bit (LSB) algorithm can encode the secret
message inside the cover image with low computational cost. For
convenience and simplicity in implementation, the LSB algorithm
hides the secret message to the least significant bits in the chan-
nel pixel of an image. The modification of the LSB algorithm is
often called ±1-embedding [23][20], because it randomly adds or
subtracts the value of 1 from the channel pixel, so that the last
bits would match the needed value. The LSB algorithm is relatively
easy to detect by a steganalyzer because it systematically alters the
statistical distribution of the image [17].

In order to overcome this limitation, the Content-Adaptive steganog-
raphy algorithms are proposed that utilize a more strategic pixel
manipulation technique: carefully picking pixels in the cover im-
age according to the secret message such that the distortion of the
encoded image is minimized. In particular, HUGO [16] defines a
distortion function domain by assigning costs to pixels based on the
effect of embedding some information within a pixel. The distortion
is measured by computing weights for local pixel neighborhoods,
which results in lower distortion costs along edges and in high-
texture regions. WOW [9] encodes information into a cover image
according to textural complexity of a region. WOWpenalizes distor-
tion to predictable regions of the image using a bank of directional
filters and shows that the more complex the image region is, the
more pixel values will be modified in this region. S-UNIWARD [10]
is similar to WOW but can be used for embedding in an arbitrary
domain. Despite the diverse implementation details, the ultimate
goals of these Content-Adaptive algorithms are the same, i.e., they
are all devoted to minimizing a distortion function by encoding the
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secret message into the noise areas or areas with complex texture,
and by avoiding the smooth areas. The Content-Adaptive steganog-
raphy algorithms are computationally expensive and can be easily
detected by deep neural network-based steganalyzer.

The Deep-Learning (DL) based steganography can encode the
secret message into the cover image with low computational com-
plexity and are less likely to be detected. S-GAN [21] is proposed
for generating image-like containers based on Deep Convolutional
Generative Adversarial Networks [18]. S-GAN consists of a genera-
tor network which produces realistic looking image from noise, a
discriminator network which classifies whether an image is syn-
thetic or real, and another discriminator network which determines
if an image contains secret messages. Although S-GAN reduces the
detection rate of steganalysis algorithms, stego-images generated
by S-GAN are warping in semantic and are more easily to draw
attention than natural images. Instead of generating image-like con-
tainers using GAN, EDS [19] proposes an encoder-decoder based
model to conceal a color secret image into a color cover image.
Without relying on hand-crafted algorithms, EDS can automati-
cally learn how to merge the cover image and the secret image
together using gradient descent. However, stego-images generated
by their models are distorted in color and are easily recognized by
well trained CNN-based steganalyzer due to the large capacity. To
overcome this limitation, IS-GAN [3] is proposed to only hide the
secret image in the Y channel of the cover image.

3 METHOD
3.1 Problem formulation
In this work, we aim to hide a secret message (text, audio, or image)
inside a cover image without being detected by the adversary. A
neural network model is developed to achieve this objective. An
overview of the network model is shown in Fig. 2. Our model adopts
the general structure proposed in [28], but is capable of transmitting
multiple types of message ranging from text, audio to image. In
order to improve secrecy, we include an encryption module and a
decryption module inside our encoder and decoder, respectively.
This design further preserves the secrecy of the encoded message
even in case the stego image from our model has been detected by
a steganalysis method, as the decryption key is not contained in
the model.

The network model consists of an encoder 𝐸, a decoder 𝐷 , an
adversary module 𝐴, and a noise layer 𝑁 . The encoder 𝐸 takes a
cover image 𝐼𝑐𝑜 and a secret message 𝑀𝑒 as input, and outputs a
stego image 𝐼𝑠𝑡 . The stego image 𝐼𝑠𝑡 is passed through a noise layer
𝑁 to produce a noisy stego image 𝐼𝑠𝑡 . 𝐼𝑠𝑡 is sent to the decoder
where a message �̂�𝑑 is decoded from 𝐼𝑠𝑡 . The adversary module
𝐴 takes the cover image 𝐼𝑐𝑜 and the stego image 𝐼𝑠𝑡 as input, and
predicts the probability 𝑝 that the input image is a stego image.
The overall loss function of the steganography model is defined as
follows.

L(𝑀𝑒 , 𝐼𝑐𝑜 ) = 𝜆1ℓ𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + 𝜆2ℓ𝑑𝑒𝑐𝑜𝑑𝑒𝑟 + 𝜆3ℓ𝑠𝑡 + 𝜆4ℓ𝑎𝑑𝑣, (1)

where 𝜆1- 𝜆4 are user-specified weights (In practice, we recom-
mend the following choice of weights: 𝜆1 = 0.7, 𝜆2 = 𝜆4 = 1,
0.001 ≤ 𝜆3 ≤ 0.1.), ℓencoder := ∥𝐼𝑠𝑡 − 𝐼𝑐𝑜 ∥22 is the encoder loss,
ℓdecoder := ∥�̂�𝑒 − �̂�𝑑 ∥22 + ℓmsg (𝑀𝑒 , 𝑀𝑑 ) is the decoder loss (�̂�𝑒 is

the feature representation of𝑀𝑒 ), ℓ𝑠𝑡 := log(𝐴(𝐼𝑠𝑡 )) is a loss func-
tion to penalize the encoder for the detection of a stego image, and
ℓ𝑎𝑑𝑣 := log(1 − 𝐴(𝐼𝑐𝑜 )) + log(𝐴(𝐼𝑠𝑡 )) is the adversary loss. Note
that ℓ𝑠𝑡 is equivalent to the second term in ℓ𝑎𝑑𝑣 in terms of function
value. The reason they are defined seperately in L is that, in the
optimization problem formulated in Eq. (4), ℓ𝑠𝑡 is parameterized by
𝐸, 𝐷 while ℓ𝑎𝑑𝑣 is parameterized by 𝐴. We use the following cross
entropy loss function to define the message loss ℓmsg (𝑀𝑒 , 𝑀𝑑 ),

ℓmsg := −
𝐿𝑀∑
𝑡=1

𝐶∑
𝑗=1

𝑥
(𝑡 )
𝑗

𝑙𝑜𝑔(𝑝 (𝑥 (𝑡 )
𝑗

= 1|𝑥)), (2)

where 𝐶 is the number of words in the dictionary, 𝐿𝑀 is the length
of the sentence 𝑥 , 𝑥 (𝑡 )

𝑗
is the 𝑗th element in the one-hot vector

representation of the 𝑡th word in sentence 𝑥 , and 𝑝 (𝑥 (𝑡 )
𝑗

= 1|𝑥)
represents the probability that the 𝑡 th word in the decoded sentence
𝑥 is the 𝑗 th word in the dictionary, conditioned on 𝑥 . For image and
audio message, ℓmsg is defined as an 𝑙2-norm:

ℓmsg := ∥𝑀𝑒 −𝑀𝑑 ∥22 (3)

Formally, the network model is proposed as a solution to the fol-
lowing optimization problem.

min
𝐸,𝐷

max
𝐴

E𝑀𝑒 ,𝐼𝑐𝑜 (L(𝑀𝑒 , 𝐼𝑐𝑜 )), (4)

where 𝐸, 𝐷 , and 𝐴 denotes the sets of weights in the encoder, the
decoder, and the adversary module, respectively.

3.2 Encoder
The proposed network model can encode three types of message
data: text, audio and image.We choose these three data types for our
steganographymodel because they are commonly-used information
media to convey messages. For text and audio data which have
a sequential pattern, a Bi-directional Recurrent Neural Network
(BRNN) model is used as the feature extraction module. For image
data which has a spatial pattern distributed in 2D or 3D space
(depending on the number of color channels), a Convolutional
Neural Network model is used to extract features.

As shown in Eq. 5, the feature extraction BRNN for text and audio
computes the feature vector using some nonlinear function 𝑓 of
the two final hidden states in both directions. Let𝑀𝑒 = {𝑥𝑡 }𝐿𝑡=1 be
an input sequence of length 𝐿 to the BRNN encoder, the calculation
of the feature �̂�𝑒 is described by the following equations.

−→
ℎ𝑡 = 𝑓 (−→𝑊𝑥𝑡 +

−→
𝑉
−→
ℎ 𝑡−1 +

−→
𝑏 ),

←−
ℎ𝑡 = 𝑓 (←−𝑊𝑥𝑡 +

←−
𝑉
←−
ℎ 𝑡−1 +

←−
𝑏 ),

�̂�𝑒 = [−→ℎ 𝐿 ;
←−
ℎ 𝐿], 𝑡 ∈ {1, 2, ..., 𝐿},

(5)

where the superscripts→ or← indicates that the variable is asso-
ciated with the BRNN units in a particular direction, the hidden
state ℎ𝑡 is calculated by a nonlinear function 𝑓 using its predecessor
hidden state ℎ𝑡−1, the 𝑡th element 𝑥𝑡 from the input sequence𝑀𝑒 ,
and the weights𝑊 , 𝑉 and 𝑏. The feature vector �̂�𝑒 is calculated as
the concatenation of the final hidden states in both directions. In
the network model proposed in this paper, 𝑓 is chosen as the Gated
Recurrent Unit (GRU).
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Figure 2: Model overview.

In the feature extraction module for image message, the input
message𝑀𝑒 is sent through a sequence of convolutional layers to
produce a 3D tensor whose height and width are the same as those
of the cover image 𝐼𝑐𝑜 . This 3D tensor is used as the message feature
�̂�𝑒 to produce the stego image 𝐼𝑠𝑡 .

To demonstrate our model’s capability of ensuring secrecy, we
apply an encryption process to the feature vector of text message.
Given a feature vector �̂�𝑒 , the encryption process generates a
permutation that alters the sequence of elements in the �̂�𝑒 . The
vector obtained after permutation, denoted as �̂�𝑃

𝑒 , is combined with
the cover image 𝐼𝑐𝑜 instead of �̂�𝑒 . When the corresponding feature
vector �̂�𝑃

𝑑
is decoded from the noisy stego image 𝐼𝑠𝑡 in the decoder,

the elements in �̂�𝑃
𝑑
is recovered to a vector �̂�𝑑 with the original

sequence as in �̂�𝑒 via an inverse process of the permutation. The
permutation is known only to the sender and the receiver, and is a
necessary step to decode the message from the stego image. Thus,
it is used as a key for message encryption and decryption.

3.3 Decoder, Adversary and noise Layer
Given a noisy stego image 𝐼𝑠𝑡 as input, the decoder in our model
produces a decoded message 𝑀𝑑 . In the case when the message
𝑀𝑒 is sequential data (text and audio), the decoder first computes
a 1-dimensional vector �̂�𝑑 from the input 𝐼𝑠𝑡 . The vector �̂�𝑑 has
the same length as the message feature �̂�𝑒 in the encoder, and is
sent to another BRNN model to reconstruct the encoded message
𝑀𝑑 . The BRNN mode for message reconstruction has the same
structure as the BRNN model in the encoder. The main difference
between the decoder’s BRNN and the encoder’s BRNN is that the
hidden state ℎ0 in the decoder is set as ℎ0 = �̂�𝑑 , while the hidden
state ℎ0 in the encoder is initialized with random number. In the
GRU model used by the BRNN decoder, the output of a recurrent
neural network unit is the hidden state. Therefore, we have𝑀𝑑 =

{𝑥𝑡 }𝐿𝑡=1 = {[−→ℎ 𝑡 ;
←−
ℎ 𝑡 ]}𝐿𝑡=1, where

−→
ℎ 𝑡 ,
←−
ℎ 𝑡 are the hidden states of

decoder’s BRNN. The adversary module is a binary classifier used
to detect stego image. and applying specially designed filters.

4 EXPERIMENTS
4.1 Model Implementation
The cover images used in network training and testing are from the
COCO dataset [14]. In the steganography experiment, three types
of message data, text, audio and image, are separately encoded in a
cover image. For text data, we use sentences of image description
from the COCO dataset in network training. For audio data, we
use the Speech Commands dataset [22] to provide audio samples
for training. This dataset has 65, 000 audio clips of voices from
around 1, 000 different people with a length of 1 second. For image
data, we use the same dataset for cover images to obtain message
samples. For each type of data, 2, 000 samples of cover images and
message samples are used in network training. Adam [12] is used
as the optimization algorithm to update the model weights. The
parameters for Adam are set as 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8.
The learning rate is chosen as 0.001, and the batch size is chosen
as 32. The test dataset has a size of 1, 000 data samples. The GAN
model is trained for 10 epochs using a computer with an Intel Core
i7-8750H CPU, 16 GB RAM, and a GeForce RTX 2060 GPU. The
total training time is 3589 seconds. After training, the sampled loss
function values on validation data is as follows. ℓ𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = 0.0046,
ℓ𝑑𝑒𝑐𝑜𝑑𝑒𝑟 = 0.0005, ℓ𝑠𝑡 = 0.9033, and ℓ𝑎𝑑𝑣 = 1.1923. In terms of
model complexity, the generator has 21,459,915 number of weights,
which can be saved as a Python dictionary object file of 190 MB.
Such file size could be considered large if running on a smart phone
or other mobile device of similar computational power. Therefore,
reducing the scale of a trained model for implementation on a smart
phone/mobile device is one of the directions of future work.

4.2 Performance Evaluation
Three metrics are used to evaluate the performance of our network
model. The first metric is capacity. We define capacity as the size of
the encodedmessage divided by the size of the cover image. The size
of a message or a cover image is calculated as the size of the array
that represents the data. The second metric is secrecy. We evaluate
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Figure 3: Comparison of cover images and stego images.

secrecy using the detectability of a stego image, i.e., how difficult it
is for a human observer or a computer classifier to identify a stego
image. The third metric is accuracy, which is defined as the fraction
of the accurately decoded elements in message𝑀𝑑 . More details of
model evaluation is provided in the following part of the section
by performance metrics.

4.2.1 Capacity. For image data as the encoded message, both the
message and the cover image have the same format which is a color
image of size 128×128×3. Therefore, by dividing the size of message
by the size of cover image, we get the capacity of our model as 1.000.
For text and audio data as the encoded message, the length of the
original message𝑀𝑒 varies from sample to sample. Therefore, we
use the fixed length of message feature �̂�𝑒 to define the message
size. In our experiments, the length of �̂�𝑒 is chosen as 𝐿 = 49, 152,
which is equal to the size of the cover image (49152 = 128× 128× 3).
Therefore, the capacity of our model for text and audio data is also
1.000. Compared with HiDDeN which operates at a capacity of
0.203 for binary message steganography, our model shows a larger
capacity and a higher versatility in terms of encoding different
types of message.

4.2.2 Secrecy. We evaluate the secrecy of our model using the
detectability of stego image. To show the detectability from human
observers’ perspective, we compare some cover images samples
with the corresponding stego images in Fig. 3. As shown in the
figure, the stego images are highly similar to the cover images for
all encoded message type, which makes them difficult to detect by
human observers. We compare our stego images with the stego
images generated by HiDDeN in Fig. 4. As shown in the figure, the
stego images generated by our model and by HiDDeN have similar
qualities. To evaluate the detectability of stego image to a com-
puter algorithm, we train the steganalyzer ATS [13] to differentiate
stego images from cover images. Given a set of cover images and a
steganography method, we first use the steganography method to
generate a set of stego images. Then, we create a training dataset
for ATS using the cover images and the stego images. The numbers
of cover images and stego images are chosen as 250. The detection
rates of different steganography methods by ATS is shown in Table
1. When the weights are unknown, our method has a detection rate
of 52%, which is slightly higher than HiDDeN but lower than the
other benchmark steganography methods. When the weights are
known, however, our model has a detection rate of 53%, which is the
lowest amount all benchmark methods and is significantly lower
than HiDDeN. This result indicates that our method has a robust
performance in hiding stego images from computer classifiers.

4.2.3 Accuracy. We show the accuracy of message decoding in
Fig. 5, where the decoding errors and the message examples are
provided. For text data, we use the fraction of incorrect words in a

Figure 4: Comparison of cover image and stego images gen-
erated by our method and HiDDeN.

Table 1: Detection rates of different methods by ATS.

Method Bits per
pixel

Detection
rate(%)

HUGO 0.200 70
WOW 0.200 68
S-UNIWARD 0.200 68
HiDDeN (weight known) 0.203 97
HiDDeN (weight unknown) 0.203 51
Our method (weight known) 1.000 53
Our method (weight unknown) 1.000 52

decoded sentence to define the decoding error. For image and audio
data, we use the 𝑙2 distance between the original message𝑀𝑒 and
the decoded message𝑀𝑑 to measure the accuracy. In addition, we
evaluate the audio data’s decoding accuracy using human listeners’
predictions. In each prediction task, a human participant listens
to an original audio sample and a corresponding decoded audio
sample. Without knowing the ground truth, the participant makes a
prediction onwhich sample he or she hears is the original one. 1, 500
prediction results are collected from Amazon Mechanical Turk, out
of which 886 predictions are correct, which yields a success rate of
886/1500 ≈ 59% for human’s prediction.

5 CONCLUSION
In this paper, we propose a deep neural network model for steganog-
raphy. The network model is able to hide message in the form of
text, audio or image under a cover image, send the cover image to
a receiver, and decode the message from the image for the receiver.
To ensure secrecy in the message transmission against potential
neural network-based steganalysis model, an adversarial classifier
is used in network training to increase similarity between a stego
image and a non-stego image. In addition, permutation of the mes-
sage feature is introduced as a cryptography method to avoid the
message from being decoded by potential adversaries. To allow
encoding of different types of data, we propose an autoencoder
model to extract features from a message and recover data from the
decoded message. Compared with other methods for steganogra-
phy, our method is able to encode a wider variety of messages, and
has a higher capacity and secrecy. For future work, we will work
to enrich the types of message in our steganography model. We

59



WiseML ’20, July 13, 2020, Linz (Virtual Event), Austria Dule Shu, Weilin Cong, Jiaming Chai, and Conrad S. Tucker

Figure 5: Decoding accuracy and message examples for different data types and models.

will also study methods to increase the level of secrecy by using
multiple layers of encoding. Implementing our proposed method
in an actual wireless communication network is another direction
of our future work.
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