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ABSTRACT
Recently, deep learning of encoding and decoding functions for
wireless communication has emerged as a promising research direc-
tion and gained considerable interest due to its impressive results.
A specific direction in this growing field are neural network-aided
techniques that work without a fixed channel model. These ap-
proaches utilize generative adversarial networks, reinforcement
learning, or mutual information estimation to overcome the need
of a known channel model for training. This paper focuses on the
last approach and extend it to secure channel coding schemes by
sampling the legitimate channel and additionally introduce security
constraints for communication. This results in a mixed optimization
between the mutual information estimate, the reliability of the code
and its secrecy constraint. It is believed that this lays the foundation
for flexible, generalizable physical layer security approaches due to
its independence of specific model assumptions.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Math-

ematics of computing→ Information theory; • Security and
privacy→ Formal methods and theory of security.
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1 INTRODUCTION
Machine learning and in particular neural network (NN) based
approaches, so-called deep learning methods, have made a consid-
erable impact in the most recent research for wireless communica-
tion. A recent branch of this new direction are end-to-end learning
approaches, where autoencoders are used to simultaneously learn
appropriate encoding and decoding functions to optimally transmit
messages over a noisy channel [28]. This approach was shown
to yield results, i.e., neural networks for encoding and decoding,
which perform close to baseline techniques [9]. The autoencoder
approaches usually involve optimizations over a minimum squared
error term or a cross-entropy loss term with variants of stochastic
gradient decent.

Recently, it was shown that these autoencoder approaches can
also be utilized to learn secure encoding functions by including a
secrecy constraint into the corresponding optimization. Here, of
particular interest is the information leakage, i.e., the information
about the confidential message that is leaked to an eavesdropper,
and the most promising approach would be to compute a tight
upper bound on the leakage and use this bound as a regulariza-
tion term in the standard loss function expression. However, this
approach is in general ambitious because normally one has only
access to samples of the channels and, accordingly, the leakage can
only be approximated for certain scenarios. One of these scenarios
was investigated in [5], where the information leakage was ap-
proximated for a Gaussian mixture model. In [37], neural networks
were utilized to learn an appropriate input covariance matrix for
precoding for the MIMO Gaussian wiretap channel, which is faster
than traditional methods. In [23], an adversarially trained deep
joint source-channel coding approach to secure communication
is proposed. In this paper, we utilize another approach to provide
security by introducing a fake clustered distribution together with a
structure enforcing cross-entropy loss. This cross-entropy loss will
impose a clustering in the transmit constellations and, accordingly,
will imitate the classical co-set coding approach for security. Using
this method, it was shown in [14], that a secure encoding can be
learned within the autoencoder framework.

However, as previously mentioned, the autoencoder approaches
use variants of stochastic gradient decent. To optimize all of the lay-
ers, backpropagation is utilized through the whole communication
chain, and therefore also through the channel itself. For that, the
channel also needs to be modelled as a layer within the autoencoder
structure. This is also the main disadvantage of the autoencoder
approaches and there are three recent advances to dissolve this
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issue: i) Generative adversarial networks (GANs), ii) Reinforcement
learning, and iii) Mutual information estimators.

i) Generative adversarial networks (GANs): Introduced in [18] to
learn the channel distribution from samples of the real channel.
GANs consist of two NNs: A generator NN that tries to generate a
fake distribution from a uniform input as close as possible to the
target distribution and a discriminator NN that tries to distinguish
between real and fake channel samples. The goal of the gener-
ator is to fool the discriminator and both NNs are alternatingly
optimized [29, 36]. ii) Reinforcement learning: Used to circumvent
the backpropagation mechanism with a feedback loop. Here, the
communication system can be seen as an agent taking actions in
a certain state and environment and receiving rewards for these
actions, i.e., a low loss in a certain communication metric. Based
on this, the system then learns an optimal policy for future actions,
that maximizes these rewards. This idea was introduced in [2],
and subsequently extended to noisy feedback links in [19]. The
disadvantage of using model-free reinforcement learning is that
the approach needs large sample sizes to accurately learn an opti-
mal policy, because the system cannot utilize known structure and
side-information.

iii) Mutual information estimators: In this work, we consider the
last approach of mutual information estimators. Here, based on
NNs as in [4] are used to estimate the mutual information between
input and output samples of the wireless channel. The resulting
estimate can then be used to train the encoder NN, by maximizing
the output value of the then fixed estimator. This approach has
the advantage that it is based on information theoretic foundations
knowing that an optimal coding strategy will maximize the mutual
information. This idea was introduced in [13] and further discussed
in [15].

The aim of this paper is now to merge the mutual information
estimation-based approach for NN-based message encoding taking
the security enabling clustered constellation approach into account.
We will show, that the encoder can learn a secure encoding scheme
based on a mixed loss function that consists of the approximate
mutual information of the legitimate channel, learned from samples,
and the cross-entropy function from the clustering enforcing the
fake distribution.

2 WIRETAP CHANNEL
In this work, we consider the wiretap channel, which is a three-
node network as shown in Fig. 1. It consists of a sender (Alice)
which transmits confidential information to a legitimate receiver
(Bob) while keeping an external eavesdropper (Eve) ignorant of it.
This setup can be seen as the simplest communication scenario that
involves both tasks of reliable transmission and secrecy. Accord-
ingly, this is the crucial building block of secure communication to
be understood for secure communication in more complex commu-
nication systems.

In the following we study the Gaussian wiretap channel. The
legitimate channel between Alice and Bob is given by an additive
white Gaussian noise (AWGN) channel as

𝑌𝑖 = 𝑋𝑖 + 𝑁𝐵,𝑖 (1)

Encoder f

MI Estimation

Channel B

Channel E

M xn yn

zn M̃

FeedbackOptimize

Alice

Bob

constraint for security

Eve

Figure 1: Gaussian wiretap channel. The encoder 𝑓 of Alice
is trained to enable secure communication to Bob. For that
channel B (to Bob) is sampled and the encoder 𝑓 is trained
tomaximize the estimatedmutual information, which itself
is learned from the channel B samples. Moreover, a security
constraint is included by invoking an exemplary eavesdrop-
per Eve.

where 𝑌𝑖 is the received channel output at Bob, 𝑋𝑖 is the channel
input of Alice, and 𝑁𝐵,𝑖 ∼ CN(0, 𝜎2

𝐵
) is the additive complex circu-

lar symmetric distributed Gaussian noise at Bob at time instant 𝑖 .
The eavesdropper channel to Eve is accordingly given by

𝑍𝑖 = 𝑋𝑖 + 𝑁𝐸,𝑖 (2)

where𝑍𝑖 is the received channel output at Eve and𝑁𝐸,𝑖 ∼ CN(0, 𝜎2
𝐸
)

is the additive complex circular symmetric distributed Gaussian
noise at Eve.We further assume 𝜎2

𝐸
> 𝜎2

𝐵
which immediately results

in a degraded wiretap channel for which the eavesdropper channel
output 𝑍𝑖 is strictly worse than the legitimate channel output 𝑌𝑖 .
Note that any Gaussian wiretap channel of the more general form
𝑌𝑖 = ℎ𝐵𝑋𝑖 + 𝑁𝐵,𝑖 and 𝑍𝑖 = ℎ𝐸𝑋𝑖 + 𝑁𝐸,𝑖 with ℎ𝐵 and ℎ𝐸 multiplica-
tive channel gains can be transformed into an equivalent wiretap
channel as in (1)-(2). This means that any Gaussian wiretap channel
is inherently degraded, cf. for example [6, Sec. 5.1].

The communication task is now as follows: To transmit a mes-
sage 𝑚 ∈ M = {1, ..., |M|}, Alice encodes it into a codeword
𝑥𝑛 (𝑚) = 𝑓 (𝑚) of block length 𝑛, where 𝑥𝑛 ∈ X𝑛 (usually, X = C
in the complex Gaussian setting). Moreover, we assume an average
transmit power constraint

∑𝑛
𝑖=1 |𝑥𝑖 |2 (𝑚) ≤ 𝑛𝑃 . At the receiver side,

Bob obtains an estimate 𝑚̂ of the transmitted message by decoding
its received channel output as 𝑚̂ = 𝑔(𝑦𝑛). The transmission rate of
this code is then given by 𝑅 = log |M|/𝑛.

The secrecy of the transmitted message is ensured and measured
by information theoretic concepts. There are different criteria of in-
formation theoretic secrecy including weak secrecy [35] and strong
secrecy [24]. In the end, all criteria have in common that the output
at the eavesdropper 𝑍𝑛 should become statistically independent of
the transmitted message𝑀 implying that no information is leaked
to the eavesdropper. For example, strong secrecy is defined as

lim
𝑛→∞

𝐼 (𝑀 ;𝑍𝑛) = 0 (3)

with 𝐼 (𝑀 ;𝑍𝑛) = ∑
𝑚,𝑧𝑛 (𝑚, 𝑧𝑛) log 𝑝 (𝑚,𝑧𝑛)

𝑝 (𝑚)𝑝 (𝑧𝑛) the mutual informa-
tion between𝑀 and 𝑍𝑛 , cf. for example [7].
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The secrecy capacity now characterizes the maximum trans-
mission rate 𝑅 at which Bob can reliably decode the transmit-
ted message while Eve is kept in the dark, i.e., the secrecy cri-
terion (3) is satisfied while achieving a vanishing error probability
𝑃𝑒 = Pr[𝑀 ≠ 𝑀̂] → 0 as 𝑛 → ∞. The secrecy capacity of the
Gaussian wiretap channel is known [6, 22] and is given by

𝐶𝑠 = max
𝑝 (𝑥)

[
𝐼 (𝑋 ;𝑌 ) − 𝐼 (𝑋 ;𝑍 )

]
= log

(
1 + 𝑃

𝜎2
𝐵

)
− log

(
1 + 𝑃

𝜎2
𝐸

)
.

3 MUTUAL INFORMATION ESTIMATION
WITH NEURAL NETWORKS

The computation and evaluation of the mutual information is a chal-
lenging task which recently gained interest in the machine learning
community due to many applications ranging from representations
learning to understanding neural networks. The challenge is mainly
due to the fact, that in most applications, the underlying joint prob-
ability density is not available and sample-based approximations
of the mutual information are needed. The main challenge here is
to provide an accurate and stable approximation from low sample
sizes of high-dimensional data sets. Common classical approaches
are based for example on binning of the probability space [8, 11],
𝑘-nearest neighbor statistics [16, 17, 21], maximum likelihood es-
timation [32], and variational lower bounds [3]. In this work, we
use a recently proposed estimator [4], coined mutual information
neural estimation (MINE), which utilizes the Donsker-Varadhan
representation of the Kullback-Leibler divergence:

𝐷𝐾𝐿 (𝑃 | |𝑄) = sup
𝑔:Ω→R

E𝑃 [𝑔(𝑋,𝑌 )] − log(E𝑄 [𝑒𝑔 (𝑋,𝑌 ) ]) (4)

where the supremum is taken over all measurable functions 𝑔 such
that the expectation is finite. The right hand side of (4) yields a
lower bound on the KL-divergence, which is tight for optimal func-
tions. In [4], Belghazi et al. proposed to choose a neural network,
parametrized with 𝜃 ∈ Θ as function family𝑇𝜃 : X×Y → R for the
lower bound. Moreover, identifying 𝑃 as 𝑝 (𝑥,𝑦) and 𝑄 as 𝑝 (𝑥)𝑝 (𝑦)
yields the estimator

𝐼 (𝑋 ;𝑌 ) ≥ sup
𝜃 ∈Θ
E
𝑝 (𝑥,𝑦) [𝑇𝜃 (𝑋,𝑌 )] − logE

𝑝 (𝑥)𝑝 (𝑦) [𝑒
𝑇𝜃 (𝑋,𝑌 ) ] . (5)

As we do not have access to the expected values, one needs to utilize
Monte-Carlo sampling to approximate the values which yields

𝐼𝜃 (𝑋 ;𝑌 ) :=
1
𝑘

𝑘∑
𝑖=1

[𝑇𝜃 (𝑥 (𝑖) , 𝑦 (𝑖) )] − log
1
𝑘

𝑘∑
𝑖=1

[𝑒𝑇𝜃 (𝑥 (𝑖 ) ,𝑦 (𝑖 ) ) ] . (6)

Note that estimating the expectation of the last term leads to a
biased estimate, due to the log function, which can be seen by
applying Jensen’s inequality, see [30] for further information. Due
to this, (6) does not represent a valid lower bound on the mutual
information anymore. However in our scenario, the estimate is
good enough to train the encoder network. Another closely related
estimator is based on 𝑓 -divergence representations [25], which uses
the Fenchel duality to bound the 𝑓 -divergence from below as

𝐷 𝑓 (𝑃 | |𝑄) ≥ sup
𝑔:Ω→R

E𝑃 [𝑔(𝑋,𝑌 )] − E𝑄 [𝑓 ∗ (𝑔(𝑋,𝑌 ))],

where the supremum is again over all measurable functions 𝑔.
Moreover, [26] also proposed to choose a parameterized neural
network for this function family and the conjugate dual function
𝑓 ∗ = exp(𝑥 − 1), to obtain a lower bound on the KL-divergence.
This leads to the estimator

𝐼 (𝑋 ;𝑌 ) ≥ sup
𝜃 ∈Θ
E𝑝 (𝑥,𝑦) [𝑇𝜃 (𝑋,𝑌 )] − E𝑝 (𝑥)𝑝 (𝑦) [𝑒𝑇𝜃 (𝑋,𝑌 )−1] . (7)

Both lower bounds share the same supremum, however, over the
choice of functions𝑇 , (5) is closer to the supremum than (7), see [31].
The drawback of both estimators is that they have a large variance.
Another approach is via replicates, proposed in [33], which yields
a low variance estimate, but is unfortunately bounded by the log
of the batch size. In [30], a linear interpolation between the critics
of the 𝑓 -divergence bound and the replicate bound was proposed,
which results in a tunable parameter. However, this also increases
the sampling and computational complexity, which is why we still
use the estimator (6).

4 ENCODING PROCEDURE AND
IMPLEMENTATION

The encoder of Alice is modelled as a neural network with one
fully-connected hidden layer with an elu activation function, and a
linear output layer. The encoder gets one-hot encodedmessages, i.e.,
binary vectors𝑚 |M | ∈ F |M |

2 of the form (0, ..., 0, 1, 0, ..., 0) which
have a one at the 𝑖-th position, representing the 𝑖-th message of
M = {1, ..., |M|}. The output of the network is then normalized to
have unit power and is shaped from 2𝑛 real values to 𝑛 complex
values or codewords 𝑥𝑛 , which are sent over the legitimate channel.
As in [13], we sample the sent signals 𝑥𝑛 and the received signals
𝑦𝑛 and feed the samples into a mutual information (MI) estimation
network 𝑇𝜃 .

4.1 Mutual information estimation
The MI estimation network consists of two fully-connected hidden
layers with 256 nodes in each layer and relu activation functions.
Afterwards, the value of the estimate is calculated, using the MINE
approach (6). For that we use the Nadam optimizer [10], which
incorporates the Nesterov momentum into the widely used Adam
optimizer [20]. This yields the following estimator for 𝑘 samples

𝐼𝜃 (𝑋𝑛 ;𝑌𝑛) :=
1
𝑘

𝑘∑
𝑖=1

[𝑇𝜃 (𝑥𝑛(𝑖) , 𝑦
𝑛
(𝑖) )] − log

1
𝑘

𝑘∑
𝑖=1

[𝑒𝑇𝜃 (𝑥
𝑛
(𝑖 ) ,𝑦

𝑛
(𝑖 ) ) ], (8)

where the 𝑘 samples of the joint distribution 𝑝 (𝑥𝑛, 𝑦𝑛), for the first
term in (8), are produced via uniform generation of messages𝑚 and
sending them through the initialized encoder, which generates 𝑋𝑛
of 𝑝 (𝑥𝑛, 𝑦𝑛). The corresponding𝑌𝑛 is generated by the channel. The
marginal distributions can be produced for example by a reshuffling
of corresponding pairs.

4.2 Training of the encoder network
To train the encoder, we use a signal-to-noise ratio (SNR) per bit
of 𝐸b/𝑁0 = 7 dB. This specifies our noise variance of the direct
channel, from which we sample and the codewords are normalized
to unity over the batch-size. Moreover, we assume an SNR per bit of
𝐸b/𝑁0 = 6 dB for Eves channel, which corresponds approximately
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to an 𝐸b/𝑁0 = 12 dB additional noise factor on top of Bobs channel.
The training of the encoder itself is divided into several phases. At
first we train the MI estimation network𝑇𝜃 for an initial round with
500 iterations and a batch size of 64. At this point, the parameters
of the encoder NN are only randomly initialized and the estimated
mutual information might not reflect the final estimated value. In
the second phase, we alternate between maximizing (8) over the
encoder weights 𝜙 and the estimator weights 𝜃

max
𝜙

max
𝜃

𝐼𝜃 (𝑋𝑛𝜙 (𝑚);𝑌𝑛) .

The encoder weights 𝜙 are trained for 5 epochs, with 400 iter-
ations and batch size of 500 with a learning rate of 0.005, and a
second time with a learning rate of 0.0005. After every epoch, the
estimator weights 𝜃 are trained for one iteration with batch size
250 and learning rate 0.05. Both optimizations are done using the
Nadam optimizer.

4.3 Enforcing structure and security
constraints on the encoder

We use the same approach to enforce the security as in [14]. For
that, we introduce a structure enforcing (SE) decoder with the
same noise parameter as Eve to apply the methods of [14] to our
case. In this approach, we train the encoder network such that the
SE decoder sees all codewords in a certain cluster with the same
probability. This is to enforce a coset-like structure on the encoding
function. In particular, the actual messages label the cosets, and
the particular codeword inside the coset is again chosen at random.
This is based on the coset coding method which goes back to the
work of [35] and we refer the reader to [27, Appendix A] for an
introduction. The idea is that Eve can only distinguish between
clusters of codewords. Whereas the messages itself are hidden
randomly in each cluster. However, the legitimate receiver has a
better channel and can also distinguish between codewords inside
the clusters. Therefore, trading a part of the communication rate for
the security constraint, one can achieve a secure communication.
To enable this cluster structure in our NN encoding, we introduce a
cross-entropy loss constraint for our SE decoder which is fed with
a modified fake input distribution. This modification is such that
clusters of codewords (calculated with the 𝑘-means method) have
the same input probability. Normally, due to the one-hot encoding
approach, a certain symbol has probability one if it was sent in the
sample in the batch. Consider for example the training vector batch
𝑚4 = (1, 2, 3, 4), resulting in the one-hot data matrix

S =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


where the rows are the samples of the batch and the columns
indicate the symbol. We now modify the true data matrix towards
an equalized matrix S̄:

S̄ = SE =


0.5 0.5 0 0
0.5 0.5 0 0
0 0 0.5 0.5
0 0 0.5 0.5



where for example the first sample has an equal probability to be
symbol 1 and symbol 2. The matrix E can be calculated with the
𝑘-means algorithm in conjunction with Algorithm 1 from [14]. The
SE decoder cross-entropy loss can now be written as

𝐿SE := 𝐻 (𝑝data (𝑀)), 𝑝SE (𝑀)) = −
|M |∑
𝑖=1

𝑠𝑖 log 𝑠𝑖 ,

where the vectors 𝑠 |M | and 𝑠 |M | can be interpreted as the decoded
distribution and as the equalized input symbol distribution as both
are normalized to one. This loss is used as our secrecy constraint. To-
gether with the previous encoder loss function, we get our security
enabled optimization problem:

max
𝜙

(1 − 𝛼)𝐼 (𝑋𝑛
𝜙
(𝑚);𝑌𝑛)

− 𝛼𝐻 (𝑝data (𝑀)), 𝑝SE,𝜙 (𝑀)) .
(9)

Note that in this formulation, the MI estimator is now fixed with a
certain 𝜃 learned in the previous phases. Furthermore, the 𝛼 param-
eter controls the trade-off between security and communication
rate on the legitimate channel. For the security constraint, we need
the SE decoder, which is implemented with a standard NN decoder
with a hidden layer with elu activation and an output layer with
softmax activation. The decoder will be pre-trained with a batch
size of 200 and 400 iterations per epoch, for {2, 1, 1} epochs with
a learning rate of {0.005, 0.001, 0.0005} with the Nadam optimizer.
Afterwards, we initialize the matrix E and train the encoder, which
will be optimized for secure encoding by maximizing (9) over 2
epochs, with 400 iterations, a learning rate of 0.005 and 𝛼 = 0.4.
The simulation code will be made available at [12], implemented
with TensorFlow 2.1 [1].

4.4 Evaluation
To evaluate the proposed method, we use standard cross-entropy
based NN decoders, both constructed equally for Bob and Eve with
a hidden layer with elu activation and an output layer with soft-
max activation. We train these decoders once after training of the
encoder and before training for security. Bob and Eves decoders
are trained with the same parameters, as the already mentioned
routine for the SE decoder above. Then we test the system with
500000 samples for each 𝐸b/𝑁0 data point. For these evaluations,
we assume an additive fixed noise of 𝐸b/𝑁0 = 12 dB (on top of
Bobs noise) for Eves channel, to unify both results in one figure.
In the second phase, we train both decoders once again after the
encoder is trained for secure encoding. This time we train both de-
coders with 2 epochs, and 400 iterations per epoch with a learning
rate of 0.005. Then we test the system again with 500000 samples
for each 𝐸b/𝑁0 data point. The Figure 2 shows the results of both
test runs. One can see that before secure encoding, Bob and Eve
achieve a low symbol error rate per batch, where Eves performance
is worse due to the higher noise parameters of her channel. After
secure encoding, Bobs symbol error rate per batch is increased
due to the trade-off between security and communication rate, but
still decreases with 𝐸b/𝑁0. Eves performance on the other hand
is capped at a certain minimum, providing security even for high
𝐸b/𝑁0 values.
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Figure 2: Evaluation of the proposed method for a 32-
dimensional codeword constellation. AE Bob and AE Eve
show the error rate for transmission of the codewords be-
fore secure encoding and, accordingly, Secure AE Bob and
Secure AE Eve refer to after secure encoding.
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Figure 3: Constellations before and after secure encoding for
2 dimensions and 16 constellation points.
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Figure 4: Constellations before and after secure encoding for
32 dimensions and 16 constellation points. t-SNE was used,
to represent the constellation in two dimensions. The left
side uses a perplexity of 30, while the right hand side uses a
perplexity of 5.

Moreover, to see if the constellation does indeed form clusters
with our approach, we trained and evaluated the system for 2 di-
mensions, as shown in Figure 3. For that we slightly tuned the
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Figure 5: Constellations before and after secure encoding for
32 dimensions and 16 constellation points. t-SNE was used,
to represent the constellation in two dimensions with a per-
plexity factor of 8 for both constellations.

training learning rate in the second phase from {0.005, 0.0005} to
{0.05, 0.005}, respectively. Moreover, the SE decoder is only trained
for 2 epochs, with 400 iterations and a learning rate of 0.005. At
last, the security enabling training was trained for 1 epoch with
210 iterations and 𝛼 = 0.45. All other parameters are the same as
in the 32 dimensional case. Here, it can be seen that the system
forms clusters and that the structure enforcing method works as
intended.

Another method to check the constellations in higher dimen-
sions is to use dimensionality reduction techniques to represent
the constellation in two dimensions and then visualize them. A par-
ticular useful technique to visualize high-dimensional data is the
t-Distributed Stochastic Neighbor Embedding (t-SNE) [34]. Note
however, that this technique strongly depends on its parameters.
In our case, the crucial factor is the perplexity, which balances lo-
cal and global aspects of the data, such as local clusters or global
structure. A low perplexity is more focused on local clusters, as
can be seen in Fig. 4 on the right hand side, while a high perplexity
focuses on global structure, which can be seen on the left hand side.
In Fig. 5, we chose a perplexity of 8 as a trade-of between local and
global aspects of the data.

5 CONCLUSIONS
We have shown that a recently proposed approach which uses a NN
based mutual information estimator to optimize encoding for chan-
nel transmission can be combined with another recent approach
to introduce a fake distribution to enforce a co-set structure which
enables secure transmission. This shows that channel knowledge
is not necessary for secure encoding with neural networks as long
as one has enough channel samples of the legitimate channel avail-
able and the channel to the eavesdropper is worse than the direct
channel in terms of noise.
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