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ABSTRACT
The novel secret inaudible acoustic communication channel [11],
referred to as the BackDoor channel, is a method of embedding
inaudible signals in acoustic data that is likely to be processed by
a trained deep neural net. In this paper we perform preliminary
studies of the detectability of such a communication channel by
deep learning algorithms that are trained on the original acoustic
data used for such a secret exploit. The BackDoor channel embeds
inaudible messages by modulating them with a sinewave of 40𝑘𝐻𝑧
and transmitting using ultrasonic speakers. The received composite
signal is used to generate the Backdoor dataset for evaluation of
our neural net. The audible samples are played back and recorded
as a baseline dataset for training. The Backdoor dataset is used to
evaluate the impact that the BackDoor channel has on the clas-
sification of the acoustic data, and we show that the accuracy of
the classifier is degraded. The degradation depends on the type of
deep classifier and it appears to impact less the classifiers that are
trained using autoencoders. We also propose statistics that can be
used to detect the out-of-distribution samples created as a result of
the BackDoor channel, such as the log likelihood of the variational
autoencoder used to pre-train the classifier or the empirical entropy
of the classifier’s output layer. The preliminary results presented
in this paper indicate that the use of deep learning classifiers as
detectors of the BackDoor secret channel merits further research.
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1 INTRODUCTION AND PROBLEM
STATEMENT

The BackDoor ultrasonic exploit by Roy et al. [11] allows for
playing of inaudible signals at frequencies above the human hearing
threshold that can be recorded by an unmodified receiver micro-
phone as if they were played audibly. The unrelated BackDoor
attack on Deep Learning (DL) systems by Chen et al. [2] is a form
of poisoning attack on deep learning systems. In contrast, the Back-
Door ultrasonic exploit [11] forms a secret secondary channel for
the transmission of acoustic data that may not be related to DL.
This approach requires only a simple ultrasonic transmitter to send
the secret audio intended to be decoded as voice that is legitimately
aired. Hence, its natural application is machine-to-machine acoustic
communications, typically processed by the DL based automatic
speech recognition (ASR) methods. Our aim is to ascertain whether
the backdoor ultrasonic communication channel is easily detectable
with existing deep learning algorithms, such as those used by ASR.

The applications of deep learning in the audio domain are copi-
ous and very diverse with, frequently, very complex models (e.g.,
for speech-to-text translation). In order to avoid complex and overly
large models we opted to demonstrate our BackDoor detection ap-
proach using a simple application of keyword spotting that aims to
recognize command words. We use our own neural networks for
classification although other neural networks may achieve better
classification results. The main reason is familiarity: we success-
fully tested these for robustness against adversarial attacks on the
same speech commands used in the datasets here [7]. Upon an-
alyzing spectral components of the Backdoor recordings, which
when played back could not be distinguished from the regularly
delivered audio, we hypothesized that the effect of the BackDoor
voice delivery on a DL classifier may be similar to the effect of
adversarial attacks in that minimal perturbations of the original
datapoints can cause misclassification [4]. In fact, Backdoor signals
processed by the DL classifier can be treated as adversarial attacks
in the physical world [10, 15].

In the Speech-to-Text domain the seminal research by N. Carlini
and D.Wagner has shown that the adversarial example does not per-
sist Over The Air (OTA) [1]. This work opened a question whether
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there exist generic, transferable (robust) ways to produce audio that
sounds like noise to humans, sounds like a valid command to an
ASR system and works against both speech and speaker recognition
systems. It was later shown that if the adversarial speech is embed-
ded into music, then the song as a carrier of the adversarial example
can deliver the attack OTA, as illustrated in the Commander Song
approach [16].

In the seminal paper [8], the authors define adversarial examples
for voice commands as consisting of a recording that seems to be
innocuous to a human observer (such as a song or speech), but
contains voice commands recognized by a machine learning algo-
rithm. This oddly sounds like the setup that we are presenting here,
which can be misleading since the BackDoor channel has not been
designed to be recognized by the machine learning algorithm in the
manner of a targeted attack. Rather, the design goal was auditory
imperceptibility. Also, the synthesis of the Backdoor samples is
hardware specific. On the other hand, as the exploited hardware
is pervasive, if such an unintended attack is possible, it certainly
deserves attention from both practical and theoretical standpoints.
The machines that synthesize and receive speech commands (such
as robotic communication) are especially vulnerable, as the under-
lying technology is always machine learning and as it is easier to
modify synthesized speech than the human voice commands. We
here perform initial investigation on the ability of machine learning
algorithms to distinguish voice commands from those delivered via
an embedded inaudible acoustic communication channel.

Problem statement through a usage scenario: We imag-
ine a scenario in which a receiving device receives ordinary voice
commands from a transmitting device at short-to-medium range
through the standard acoustic channel played over the air. An at-
tacker modifies the transmitting device such that it is equipped
with ultrasonic speakers that inaudibly modify the original audio
by multiplexing false commands. Human auditory system can only
detect the original audio.

As previously mentioned, it is quite possible that such an exploit
could use machine-to-machine (M2M) acoustic communication to
piggyback the ultrasonic message. M2M (robotic) acoustic commu-
nication is typically processed by the DL based ASR. For example,
the attacker may want to send a ’Stop’ command through the secret
inaudible ultrasonic transmission and cause the robotic receiver
to shut-down. Another target of the Backdoor delivery can be a
speaker recognition system (perhaps distinguishing between male
and female speakers), where the inaudible channel can impersonate
speakers that are not present affecting the decision making based
on the classifier. The machines that receive the signal and process it
automatically are not usually equipped with the signal processing
software that can detect usage of the BackDoor channel. If a detec-
tor existed that could distinguish the BackDoor data sample even
when the classifier does not, the attacker can also compromise the
machine by injecting the detector code and have it filter out the
sequence of inaudible messages thus creating a real secret commu-
nication channel. We seek to investigate if the receiver machines
equipped with a DL neural net used for legitimate ASR can detect
that the received signal is compromised by BackDoor. We hope
to then use it to identify if the voice signals from the transmit-
ter are just the original audible channel or the BackDoor channel
transmissions.

2 BACKDOOR SYSTEM
2.1 Acoustic Systems Background

Figure 1: Standard Acoustic Receiver Design

Acoustic receiver design for consumer microphones is largely
standardized, maintaining similar construction among a variety of
devices as illustrated in Fig. 1. First, the air pressure waves that
compose sound reach the microphone, whereupon they actuate
its diaphragm. The diaphragm is a thin membrane that vibrates
in response to this pressure variation, and in doing so creates an
electrical signal on the order of tens of milliVolts. This signal re-
quires amplification for further processing and sampling, and thus
goes through a pre-amplifier (or pre-amp) with a gain of around
ten. Since most analog-to-digital converters (ADC) in microphones
operate at ≈ 48𝑘𝐻𝑧, the resultant amplified signal is first filtered
through a low-pass filter (LPF) with a cutoff frequency around
24𝑘𝐻𝑧 (to keep it below the Nyquist frequency) before finally being
converted to digital samples by the ADC. This sampling rate is
appropriate because the human audible hearing range is restricted
to between 20𝐻𝑧 and 20𝑘𝐻𝑧, with some infants and animals being
capable of hearing up to 24𝑘𝐻𝑧.

An important characteristic of microphones is the operation
of their pre-amp stage. It is designed such that the signal from
the diaphragm should be linearly amplified by some gain factor
𝑆𝑜𝑢𝑡 = 𝐴1𝑆𝑖𝑛, where 𝐴1 is typically ≈ 10.

In practice, however, imperfections in the design and construc-
tion of the pre-amp (often due to cost-saving measures) result in
the signal being amplified by a non-linear series of the form

𝑆𝑜𝑢𝑡 =

∞∑
𝑘=1

𝐴𝑘 (𝑆𝑖𝑛)𝑘 = 𝐴1𝑆𝑖𝑛 +𝐴2 (𝑆𝑖𝑛)2 +𝐴3 (𝑆𝑖𝑛)3 + . . . (1)

Each 𝐴𝑘 coefficient is weaker than the previous, such that cubic
terms (𝐴3) and above are negligible and largely indistinguishable
above the noise floor. For frequencies in the typical range (below
24𝑘𝐻𝑧), the quadratic term (𝐴2) is also generally weak enough to be
unnoticeable. However, this quadratic term becomes non-negligible
for frequencies beyond the audible range (above 24𝑘𝐻𝑧). This is
the source of the BackDoor exploit developed by Roy et al. [11] for
the inaudible transmission and recording of sound.

2.2 BackDoor Exploit Description
In order to leverage the non-linearity in the pre-amp of micro-

phones, we begin by creating a signal of the form sin(𝑓𝑐2𝜋𝑡), in
which a carrier frequency (denoted 𝑓𝑐 ) is greater than 24𝑘𝐻𝑧. Trans-
mitting this will produce an inaudible signal that will be filtered
out by the built-in LPF of the receiver microphone. However, by
simultaneously transmitting another signal of the form sin(𝑓𝑠2𝜋𝑡)
in which a secondary frequency (denoted 𝑓𝑠 ) is also greater than
24𝑘𝐻𝑧, the resultant signal reaching the receiver microphone can
be modeled as the sum of both signals such that

𝑆𝑖𝑛 (𝑡) = sin(𝑓𝑐2𝜋𝑡) + sin(𝑓𝑠2𝜋𝑡) (2)
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Figure 2: BackDoor Example for Voice Sample
Upon reaching the pre-amp stage of the microphone the signal

will be non-linearly amplified such that the resultant signal will be
of the form

𝑆𝑜𝑢𝑡 (𝑡) ≈ 𝐴1 (𝑆𝑖𝑛) +𝐴2 (𝑆𝑖𝑛)2 = 𝐴1 [sin(𝑓𝑐2𝜋𝑡) + sin(𝑓𝑠2𝜋𝑡)]

+𝐴2

[
1 + cos((𝑓𝑐 − 𝑓𝑠 )2𝜋𝑡) + cos((𝑓𝑐 + 𝑓𝑠 )2𝜋𝑡)

+ 1
2 (cos(2𝑓𝑐2𝜋𝑡) + cos(2𝑓𝑠2𝜋𝑡))

]
(3)

After passing through the LPF, all frequencies above 24𝑘𝐻𝑧 are
filtered out, and the only component of 𝑆𝑜𝑢𝑡 (𝑡) that remains is
the 𝐴2 cos((𝑓𝑐 − 𝑓𝑠 )2𝜋𝑡) term. Thus, the ADC will produce digital
recorded samples of a tone with frequency equal to the difference
between the frequencies of the carrier and secondary tones (𝑓𝑐 − 𝑓𝑠 ).
By selecting 𝑓𝑐 and 𝑓𝑠 appropriately, both can be inaudible while
played through the air but their difference can map to an audible
frequency (𝑓𝑐 , 𝑓𝑠 > 24𝑘𝐻𝑧; 20𝐻𝑧 < 𝑓𝑐 − 𝑓𝑠 < 20𝑘𝐻𝑧) and thus be
recorded as if it was played audibly. While this method is effective
in inaudibly transmitting and recording tones of a single frequency,
the goal of such inaudible communication is to record entire sam-
ples of audio, particularly that of human speech. To do this, further
processing is needed prior to transmission. Song et al. [13] devel-
oped a technique using amplitude modulation to accomplish this.
Given some original audio pattern 𝑆𝑎𝑢𝑑 (𝑡), we create an ultrasonic
signal by modulating the amplitude of our carrier tone such that
the new signal is of the form 𝑆𝑚𝑜𝑑 (𝑡) = 𝑆𝑎𝑢𝑑 (𝑡) sin(𝑓𝑐2𝜋𝑡). A sec-
ondary sinewave with 𝑓𝑠 = 𝑓𝑐 is transmitted simultaneously. The
signal received at microphone is

𝑆𝑖𝑛 (𝑡) = 𝑆𝑎𝑢𝑑 (𝑡) sin(𝑓𝑐2𝜋𝑡) + sin(𝑓𝑐2𝜋𝑡) (4)

where it is linearly and quadratically amplified by the non-linearity
of the microphone’s pre-amp. The result after low-pass filtering
will then be of the form

𝑆𝑜𝑢𝑡 (𝑡) =
𝐴2
2

(
1 + 2𝑆𝑎𝑢𝑑 (𝑡) + 𝑆2

𝑎𝑢𝑑
(𝑡)

)
(5)

𝑆2
𝑎𝑢𝑑

(𝑡) is significantly lower than 𝑆𝑎𝑢𝑑 (𝑡) above DC frequencies,
and hence, since most human speech patterns contain only frequen-
cies above 50𝐻𝑧, its effect can be neglected.

Fig. 2 illustrates the entire BackDoor process for a sample voice
signal. The signal is modulated with a 40𝑘𝐻𝑧 carrier tone, creating
a signal with sidebands around a 40𝑘𝐻𝑧 center frequency (where
the lower sideband is still above the audible threshold for humans).
When this is played through an ultrasonic speaker at the same
time as a 40𝑘𝐻𝑧 secondary tone, the microphone records a signal

𝑆𝑜𝑢𝑡 (𝑡) that is almost identical to the original signal 𝑆𝑎𝑢𝑑 (𝑡). The ef-
fective result is that 𝑆𝑎𝑢𝑑 (𝑡) is recorded by the receiver microphone
while remaining inaudible throughout its transmission. This can
be applied for the manipulation of Voice-Enabled Devices (VED)
such as speech-activated personal assistants, as demonstrated by
Zhang et al. [17]. Such an exploit permits an attacker to prompt
the VED to discreetly perform privileged actions or to divulge per-
sonal information. This presents a need for the detection of such
BackDoor-transmitted inaudible voice commands to mitigate this
security risk.

Previous research by Roy et al. [12] has primarily focused on
detecting BackDoor using signal processing based on its nuanced
noise characteristics. These include observing the prevalence of
tones below 50𝐻𝑧 (owing to the existence of the above 𝑆2

𝑎𝑢𝑑
(𝑡)

term) and applying angle-of-arrival-based techniques to estimate
the phase-based separation of the two ultrasonic speakers. How-
ever, these are susceptible to interference from slight environmental
changes and can be unreliable for robust attacks or attacks of vary-
ing power.

2.3 BackDoor Implementation
Our implementation of the BackDoor system begins with the

input of an original audio recording as a wave file. This file is then
upsampled to 250𝑘𝐻𝑧 so that it can be modulated with the 40𝑘𝐻𝑧
carrier tone in software. The result is then amplified by a factor
𝑁1 before being converted to an analog signal by a National In-
struments myDAQ Data Acquisition Device [6]. The output from
the myDAQ is insufficient to drive the ultrasonic speakers used,
so a driver circuit was implemented for each of our two ultrasonic
speakers using NE5534AP-based non-inverting operational ampli-
fiers powered by isolated power supplies. The speakers themselves
were Prowave 400ST160 ultrasonic transducers [3]. The frequency
response of these speakers indicates that their ideal resonant fre-
quency is 40𝑘𝐻𝑧, which is why this was chosen as the carrier tone
𝑓𝑐 . A 40𝑘𝐻𝑧 secondary tone (𝑓𝑠 ) with amplitude 1 Vpp was produced
by a Tektronix AFG3021 Function Generator [9] and amplified by a
gain factor AV = 2 in our driver circuit before being played through
the secondary speaker. Experimentation indicated that ideal results
were produced with 𝑆𝑚𝑜𝑑 that has twice the amplitude of the sec-
ondary tone, so 𝑁1 was chosen to be 2 and the signal produced
from the myDAQ was again amplified by our op-amp driver by a
gain factor of AV = 2.

Data Collection Procedure: Each sample was played audi-
bly through the air using a standard 4-ohm speaker that was driven
using the same driver circuitry as the ultrasonic speakers with a
0.3 Vpp input from the myDAQ and a gain factor of AV = 2. All
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samples that were played audibly were recorded inside a box with
dimensions 0.4m x 0.3m x 0.1m at a distance 0.2m away from a
receiver microphone. Next, all samples were played through the
BackDoor system described previously at the same distance with
the two ultrasonic speakers side-by-side. By comparing the audible
re-recorded samples to the BackDoor samples, the confounding
variable of background noise was controlled for and thus the algo-
rithm could be appropriately trained to detect BackDoor signals
from audible signals of the same type. The recordings were made
and processed in 16𝑘𝐻𝑧 32-bit audio.

3 DEEP LEARNING
In this subsection we describe the acoustic datasets and the deep

learning architectures used to asses the effect of the BackDoor
channel on the dataset. We will use standard datasets, which are
collections of wave files, prepared for the training and testing of
diverse ASR algorithms. We then describe how features are pre-
pared for specific deep learning algorithms starting from those file
collections.

3.1 Dataset Sources and Feature Preprocessing
We used two audio datasets to embed BackDoor channels:

• Speech Command (SC) dataset [14], which consists of spoken
words designed to help train and evaluate keyword spotting
systems. Speech Commands data set was collected by Google
and released under a CC BY 4.0 license. The dataset is labeled
by Speech words.

• Audio Set dataset [5], which contains samples from human
speech uploaded to YouTube voluntarily by a variety of
speakers. Audio Set data set was collected by Google and
released under a CC BY-SA 4.0 license. The dataset is labeled
by the Speaker gender.

The SC dataset is an attempt to build a standard training and evalua-
tion dataset for a class of simple speech recognition tasks. Keyword
spotting aims to build simple and effective models for identification
of keywords in utterances, particularly for the purpose of deploying
such algorithms on mobile platforms: a familiar example would be
iPhone and Alexa devices recognizing the ’wake-up’ commands
’Siri’ and ’Alexa’, respectively. We use this dataset to demonstrate
the concept of using the proposed deep learning metrics to detect
the inaudible BackDoor channel embedded in the legitimate utter-
ances that are effectively classified by the associate deep learning
algorithm. We present the keyword spotting classification on just
two keywords from the dataset (Wow and Stop) in order to compare
the results with another binary dataset containing two classes of
speech — bymale and female speakers. The other dataset, Audio Set,
contains 30 samples (7-12 seconds each), of which 15 are classified
as male and 15 are classified as female. We created two datasets
from each of the above datasets: the audible version of each sample
(played through a speaker and re-recorded), and the BackDoor ver-
sion of each sample (played ultrasonically and recorded through
BackDoor).

To explain how the dataset is being preprocessed and fed into
the deep neural net, we will use the SC dataset, which contains
one wave file per utterance and its associated label. The duration
of each utterance is one second. For each wave file we perform

the standard method of preprocessing audio recordings for speech
recognition, except for the last step. Note that wave files are digital
formats of audio recordings, obtained by sampling the analog audio
signal. For the purposes of evaluating the BackDoor detection, we
play back the original SC wave files and record them, and we play
them back again while embedding them in the ultrasonic carrier
to render them inaudible, and record the received signal into wave
files that will be used to build datapoints of the BackDoor dataset.
The sampling rate (the number of samples per second) used for
both datasets was 16𝑘𝐻𝑧 (a little stronger than Nyquist criterion,
hence without distortions and with full information content about
the signals). Therefore, the length of the array of numbers that we
get as a result of reading each wave file is 16000. Now, such an
array is sparse, and therefore typically the approach is to create a
spectrogram from those samples, which performs dimensionality
reduction and a convenient visualization of where the voice energy
is in the frequency and the time.

The following explains how this is done. We will use 40 features
(frequency bands) for each temporal window of 20 milliseconds
that slides over the 1s long recording of the keyword in the wave
file. 40 features yield decent quality of reproduction. The shift be-
tween windows is another parameter, in this case set up so that
there are 101 windows covering the utterance of the word. Each
window is where a Short Time Fast Fourier Transform (STFFT) is
performed, providing the frequency signature. As each window
produces the signature with 40 features related to how the energy
of the voice is distributed along the frequencies, the obtained spec-
trogram (visualized utterance) is a 2-D matrix 40 by 101, whose
elements are color coded "‘FFT coefficients"’. For voice processing
there is an additional filter applied to make the spectrograms: the
40 features (frequency coefficients per time instant) are obtained
by non-uniformly sampling the audio frequencies according to the
human audio perception. Those frequencies are known as Mel fre-
quencies, and the entire transform is known as Mel-Frequency Cep-
strum (MFC) transform. In addition, a log operation is performed
over the elements of the spectrogram to perform the processing in
the dB domain (this is a frequent measure of the relative intensity
of audio signals).

Bottom line is that the set of preprocessed features now has 4040
(40 by 101) dimensions per data point instead of 16000. The last
step in our preprocessing of Speech commands is different from
the typical approach. We flatten the spectrogram by unfolding it,
and hence, our input data point is a vector of 4040 elements. This is
done for simplicity. Consequently, the convolutional autoencoder
and the matching classifier described in the next subsection use
1-D convolutional layers instead of 2-D convolutions.

3.2 Deep Neural Networks and Metrics
We here propose two types of deep learning classifiers for speech
signals:

Pretrained by Autoencoder (AE): Inspired by our work on miti-
gating adversarial examples for both acoustic and radio frequency
waveforms, we hypothesized that the AE-based training increases
the classifier’s robustness to the BackDoor channel in the same
way as it protects against adversarial examples, by projecting dat-
apoints to a lower-dimensional manifold (the bottleneck layer of
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the AE). This projection is achieved by training the AE to minimize
the distance between the original datapoints at the input and their
estimates at the output of this particular DL architecture consisting
of an encoder and a decoder linked by the bottleneck layer. The
upper part of the AE, the encoder, is then retrained in a supervised
manner to classify datapoints according to the classes in the labeled
training dataset. If the hypothesis is confirmed, such robustness
to the BackDoor channel would here be an impediment to its de-
tection, as the main goal is to catch the secret communication and
not to make it imperceptible to the classifier. However, our results
(Fig. 3 and 4) show that even if the accuracy is well preserved, the
DL statistics still provide an indication that the sample is Backdoor
delivered.

Classically trained Convolutional Neural Net (CNN): We also use
a classically trained CNN that has the same architecture as the
encoder of the AE (modulo the last softmax layer used for the
classification). We hypothesize that this CNN will experience per-
formance degradation in terms of accuracy when presented with
the datapoints that embed the BackDoor channel. If the hypothesis
is proved, such degradation due to the BackDoor channel would
indicate that we can derive good detection statistics based on the
CNN parameters.

Note that we cannot use the accuracy as a detection statistic, as
we do not have the ground truth when performing the hypothesis
testing on a data sample. As we here know the ground truth for
our datasets, both original and those with the embedded BackDoor
channel, we can use the accuracy as an indication of the effect that
the BackDoor channel has on the classifier. However, for detection
we need a different metric. We propose to use the likelihood loss
calculated for a variational encoder with the same architecture
as the AE, but which treats the bottleneck layer as multivariate
Gaussian parameters of the latent distribution to be trained, and
performs sampling from that latent distribution every time it pushes
the data from encoder to decoder. Similarly the output of the de-
coder is treated as multivariate Gaussian parameters of the data
likelihood, from which we can calculate log likelihood for each
particular datapoint. It is expected that out-of-distribution samples,
such as the audio sample with the embedded BackDoor, will have a
measurably different log likelihood (see Fig. 4). For the classically
trained classifier we use the empirical entropy of the softmax layer
pseudo-probabilities (see Fig. 5):

𝑃 (𝑦 = 𝑐 |𝑥) = exp(𝑤𝑇
𝑐 𝑓𝑠 (𝑥) + 𝑏𝑐 )∑

𝑖∈𝐶 exp(𝑤𝑖 𝑓𝑠 (𝑥) + 𝑏𝑖 )
, (6)

where the class label 𝑐 ∈ 𝐶 is here binary, and 𝑓𝑠 represents the lay-
ers above the final layer. The architecture of the encoder can be de-
scribed as repetitive layering of the following substructure of layers
that we refer to as E cell: 𝐸𝐶 (𝑘𝑠 ) = 1𝐷𝐶 (𝑘𝑠 ) −→ 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(2),
where in each 1-dimensional CNN layer 1𝐷𝐶 we used 8 channels,
and 𝑘𝑠 denotes the 1-dimensional kernel size. This created the fol-
lowing encoder design:

𝐸 = 𝐸𝐶 (10) −→ 𝐸𝐶 (5) −→ 𝐸𝐶 (5) −→ 𝐸𝐶 (3)
−→ 1𝐷𝐶 (3) −→ 𝐹𝐶 (505) −→ 𝐹𝐶 (105), (7)

where 𝐹𝐶 (𝑛) denotes a fully connected layer with 𝑛 outputs. All E
layers have the same ReLU nonlinearity. For the classification we
add to the pretrained encoder another fully connected layer with

softmax nonlinearity and 2 outputs, hence creating the following ar-
chitecture of the AE-pretrained classifier: 𝐶𝐴𝐸 = 𝐸 −→ 𝐹𝐶 (2). For
the pre-training of the encoder we embed it in an autoencoder (AE)
architecture together with the decoder 𝐷 , 𝐴𝐸 = 𝐸 −→ 𝐷, where D
can be described as repetitive layering of a substructure of layers
that we refer to as D cell: 𝐷𝐶 (𝑘𝑠 ) = 1𝐷𝐶 (𝑘𝑠 ) −→ 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(2),
where the upsampling layer performs the operation opposite of
max pooling. This created the following decoder design

𝐷 = 𝐷𝐶 (3) −→ 𝐷𝐶 (3) −→ 𝐷𝐶 (5)
−→ 1𝐷𝐶 (5) −→ 1𝐷𝐶 (10), (8)

where all layers have the same ReLU nonlinearity. The classically
trained classifier shares the architecture of 𝐶𝐴𝐸 , only without AE-
pretraining the E-layers.

4 EVALUATION RESULTS
We now illustrate the impact that the BackDoor channel has on

two types of classifiers, the AE- and the classically trained. We
present this impact visually through graphs as they illustrate the
trends well, and also because the rigorous presentation of the test
metrics requires much more space. The illustrations combine the
effects on the accuracy and the effects on the loss functions that
indicate out-of-distribution samples. Accuracy results for the two
applications (speaker, and speech command recognition) are pre-
sented by Figures 3 and 6, respectively. Fig. 3 represents typical
(average) results for the speaker gender recognition, which aligns
with our expectations. The performance of both classifiers is de-
graded when the samples are recorded through a BackDoor channel.
As expected, the AE-trained classifier is more robust (dashed-line
plots). However, with the SC dataset we see the AE-trained classi-
fier behaving both ways: Fig. 6 shows the case when the BackDoor
testing subsets performed better on the classically trained classifier.
This requires more testing.

Fig. 4 illustrates that the log-likelihood based loss can be used
as a statistic for detecting the BackDoor generated outliers. In
Fig. 4 the log likelihood during AE training (blue and orange),
and during the inference (green and red), are shown for the
legitimate and BackDoor-corrupted data, respectively. Equiva-
lently, the pseudo-probabilities at the outputs of the two classifiers
shown in Fig. 5 can be used to calculate pseudo-entropy statistics,
𝐻 (𝑥) =

∑𝐶
𝑖=1 𝑝𝑖 (𝑥) log 𝑝𝑖 (𝑥), where 𝐶 is the number of classes,

and [𝑝1 (𝑥) · · · , 𝑝𝐶 (𝑥)] is the vector of the class probabilities at
the output layer, evaluated at input 𝑥 . Class probabilities in Fig. 5
are color-coded: yellow for male (M), and purple for female (F).
It is obvious that the AE keeps the pseudo-probabilities closer to
the ideal points, like on the right plots, i.e., 𝑝 (𝑀) = (0, 1) and
𝑝 (𝐹 ) = (1, 0), making the classes linearly separable, while the clas-
sical net moves the pseudo-probabilities closer to the uncertainty
area around (0.5, 0.5) .

Finally, in Fig. 7 we show the effect of the BackDoor channel
on the confusion matrices of both binary classifiers (here for the
speech command recognition).

5 CONCLUSION
In this paper we study the effect that a secret inaudible acoustic

communication channel, referred to as the BackDoor channel, has
on the classification of its embedded acoustic data, and show that
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Figure 3: Accuracy of Deep Learning classifiers trained on
Male/Female Speaker recognition (over training epochs)

Figure 4: Normalized Log likelihood Loss of Deep Learning
classifiers trained on Male/Female Speaker recognition

Figure 5: The probabilities of classes derived from the out-
put layer of the Male/Female Speaker recognition (AE top,
classical bottom, normal right, BackDoor left)

Figure 6: Accuracy of Deep Learning classifiers trained on
Speech Commands (over training epochs)

AE BackDoor CNN BackDoor CNN No BackDoor

Figure 7: Confusion matrices of Deep Learning classifiers
trained on Speech Commands with and without BackDoor
the accuracy of a deep learning (DL) classifier is degraded due to
the secret inaudible delivery of the signal. The degradation depends
on the type of the DL classifier and it appears to impact less the
classifiers that are trained using autoencoders. We perform pre-
liminary studies on the detectability of the BackDoor channel by
DL algorithms that are trained on the original data. We propose
test statistics that can be used to detect BackDoor even when the
accuracy of classification does not indicate it: the log likelihood
of the variational autoencoder used to pretrain the classifier, and
the empirical entropy of the classifier’s output layer. The results
indicate that there is a strong case for using DL neural nets to detect
inaudible BackDoor communications, but the exact nature of this
relationship necessitates further research.
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