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ABSTRACT

In an Industrial Control System (ICS), its complex network of sen-

sors, actuators and controllers have raised security concerns. In

this paper, we proposed a technique called Process Skew that uses

the small deviations in the ICS process (herein called as a pro-

cess fingerprint) for anomaly detection. The process fingerprint

appears as noise in sensor measurements due to the process fluctu-

ations. Such a fingerprint is unique to a process due to the intrinsic

operational constraints of the physical process. We validated the

proposed scheme using the data from a real-world water treatment

testbed. Our results show that we can effectively identify a process

based on its fingerprint, and detect process anomaly with a very

low false-positive rate.
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1 INTRODUCTION

An Industrial Control System (ICS) is composed of a set of sensors,

actuators, controllers and communication networks [18]. Connec-

tivity in an ICS provides improved monitoring and operation of a

physical process. Such advancements are helpful but also bring up

the challenge of secure operation of the connected devices [4].
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An ICS could be subject to cyber and/or physical attacks, which

can be launched either remotely or locally. Attackers may tamper

sensor reading or inject spoofing sensor data, and manipulate the

actuators which, will cause anomaly of operations and eventually

lead to physical damages to the system. Traditional intrusion de-

tection methods based on network traffic cannot detect many low

layer attacks originated in the physical domain, as there would be

no abnormal network traffic [26].

Sensor data is transmitted to a Programmable Logic Controller

(PLC) to take an appropriate action based on the sensor measure-

ment. If an adversary can spoof sensor data in the digital or physical

domain, it can derive a system to an unsafe state. The focus here is

not on the confidentiality of the data as in legacy computer security

but the integrity and trustworthiness of the data [15, 17]. Detection

methods based on the physics of the process against attacks on

sensor reading have been proposed in recent studies [2, 23, 25–

27, 29, 31]. An attacker who tries to defy rules of physics would

also expose itself. An understanding of the physics of the process

can help to secure an ICS.

1.1 Proposed Technique

A novel technique is proposed to identify a physical process and

detect data integrity attacks in an Industrial Control System (ICS).

The proposed technique uses the small deviations in the process due

to the deviations of the process (herein called process skews). The

process skew is a noise that appears in sensor measurements due

to the process fluctuations. Uniqueness in the skews is due to the

specified operational constraints of the physical process. To create a

process skew based fingerprints, it is challenging to extract process

skew information from the sensor measurements. The proposed

idea is inspired by the idea of clock skew in computers [16]. The

concept of clock skew is that due to manufacturing inaccuracies, the

clock of a computer will present a skew from its designed frequency.

Similarly, for a process due to inaccuracies in the process, it would

have a skew from what it is designed for. An example is that of

a water pipe taking water to fill a tank. Pipes and tanks of two

different sizes would take/store a different amount of water. Even

if the pipes are of the same size, two different amounts of pumping

force will result in a different amount of water flowing or being

stored. The flow of water in a pipe and water storage in a tank

are examples of the physical process. At the design stage, these

processes are designed to meet certain operational requirements.

However, when these processes are running they show small offsets

from the designed parameters due to the physical inaccuracies in

219

https://doi.org/10.1145/3395351.3399364
https://doi.org/10.1145/3395351.3399364


WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Chuadhry Mujeeb Ahmed et al.

Figure 1: SWaT Test-bed Network Architecture.

the process, for example, no two water pipes can be same diameter

at a micro-scale due to manufacturing imperfections.

1.2 Related Work

A closely related work proposed [21] to fingerprint sensors based

on the measurement noise. However, the technique works only in

specific states, for example, if the water in the tank is constant. To

extract sensor noise for certain sensors (e.g. level sensors), one needs

to wait for the process to be static. The work in [21] uses the noise

from the sensor which a function of hardware of a device, while in

our work we look at the inaccuracies in the physical process itself

rather than the device. Moreover, our proposed technique does not

depend on the specific state of the system and uses the dynamics

of the process to create a system model. It uses process skews to

create a fingerprint which is a novel idea.

CAN Bus Fingerprinting: In a particular type of ICS(automotive

industry), researchers have tried to fingerprint devices in Controller

Area Networks(CAN) bus [10–12, 22]. In [11] authors used clock

skews frommessage arrival times as a fingerprint to detect intrusion

for Electronic Control Units (ECUs) for a CAN bus based in-vehicle

communication system. This approach is similar in essence to [16]

as explained above and can not be used for sensors due to the lack

of those physical components to generate particular features. In [10,

12, 22], output voltages onCANbus are used to fingerprint the ECUs.

For an electric grid system, the authors in[13] studied the opening

and closing timing profiles of electric relays as fingerprints. Besides

these techniques, other methods are proposed to fingerprint the

devices in ICS. However, our proposed technique is a distinctiveway

of passively fingerprinting processes. To the best of our knowledge,

this is the first attempt at using process skew as a process fingerprint

to detect attacks.

Our Contributions: The main contributions of this work are,

• To propose a novel idea of process skew to fingerprint the

physical processes.

• To detect sensor attacks under a multitude of adversarial

scenarios.

2 MOTIVATION AND OVERVIEW

In this section, we will present details related to Secure Water

Treatment Testbed (SWaT), which is used as a case study in this

work. An overview of the proposed technique is also presented.

2.1 Industrial Control Systems

Industrial Control Systems (ICS) is a broad domain of connected

industrial systems. A particular example of a water treatment indus-

trial process is considered in this study. In particular, Secure Water

Treatment Testbed (SWaT) at Singapore University of Technology

and Design is being used as a motivating example in this paper.

SWaT is a fully functional testbed and is open for researchers to use.

A brief introduction is provided in the following, but an interested

reader is referred to the testbed paper [19]. The SWaT testbed pro-

duces the purified water, and it is a scaled-down version of a real

water treatment process. In Figure 1 it can be seen that the testbed

is distributed and there are different stages, where each stage is

labeled as 𝑃𝑛 where n is the nth stage. There are six stages in the

SWaT testbed 𝑃1 through 𝑃6. Each stage is equipped with a set of

sensors and actuators. Sensors include water quantity measures

such as level, flow, and pressure and water quality measures such

as pH, ORP and conductivity. Actuators are different motorized

valves and electric pumps. Stage 1 is the raw water stage to hold

the raw water for the treatment and stage 2 is the chemical dosing

stage to treat the water depending on the measurements from the

water quality sensors. Stage 3 is the ultra-filtration stage. Stage 4 is

composed of de-chlorinator and stage 5 is equipped with reverse

osmosis filters. Stage 6 holds the treated water for distribution.

Data from the sensors and actuators are communicated to the PLCs

using a level 0 network and PLC communicates to each other over

a level 1 network, as shown in Figure 1.

2.2 Overview of the Proposed Technique

A major challenge is to extract the process skew from sensor data.

An overview of the proposed technique is shown in Figure 2. The

first step is to extract the measurements for a specific state of the

process. It means that based on the actuator data, it is possible to

determine the physical state of the process. For example, if the inlet

pump is ON then the water is being filled in a tank, by knowing the

state of the pump, it is possible to know the state of the physical

process. However, such state information from the sensors and

actuators might be spoofed by an attacker. Next, based on the state

of each process a model along with the design parameters of the

physical process is used to estimate the physical state of the process,

for example, the water level in a tank. The difference between these

estimates and real sensor measurements establishes an offset value,

an amount by which the process is offset from what it should be, as

per the design. These process offsets, when accumulated over time,

reveals the process skew but still contain fluctuations due to the

sensor noise. A linear regression model is used to obtain the best

fit for each process skew. Process skew is obtained by calculating

the rate of change of linear regression on offsets with respect to

time. A theoretical proof based on the calculated entropy of the

process skew is used to establish the uniqueness of process skews.

A CUSUM detector is used to detect attacks based on the process

skew. Details on the design of each block in Figure 2 are presented

in Section 4.

3 THREAT MODEL

In an ICS, state of the physical process is known via sensors. System

is kept in the normal operating bounds by the controllers based
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Figure 2: Overview of the proposed technique.

Figure 3: An abstraction of a Cyber Physical System (CPS).

𝑦𝑘 may or may not be attacked sensor measurement [6].

on the sensor measurements. An adversary can spoof sensor mea-

surements to deceive the controllers. It is important to authenticate

whether the data is originating from the real physical process or

being modified in some manner. Due to computational limitations

and legacy compliant equipment it is not feasible to rely on cryp-

tographic methods [8]. Therefore, we came up with the proposed

novel idea of process skew based authentication of a physical pro-

cess. The goal is to identify a process based on its physical dynamics.

Specific cyber attacks are also considered on sensor measurements

in a water treatment plant. In Figure 3, it can be seen that an at-

tacker can modify a rightful sensor measurement by an attack value

𝛿𝑘 . In this section, we introduce the types of attacks launched on

the secure water treatment testbed (SWaT). Essentially, the attacker

model encompasses the attacker’s intentions and capabilities. The

attacker may choose its goals from a set of intentions [28], includ-

ing performance degradation, disturbing a physical property of the

system, or damaging a component. In our experiments, a range of

attacks are considered from already published attack scenarios in

the literature [9, 14].

3.1 Attacker Model

Assumptions on Attacker: It is assumed that the attacker has access

to the sensor’s measurements. A powerful attacker can arbitrarily

change sensor measurements to the desired sensor value. We do not

consider replay attack in this article because process skew profile

for process would be preserved during a replay attack.

3.2 Attack Scenarios

Data Injection Attacks: For data injection attacks, it is considered

that an attacker injects or modifies the real sensor measurement.

In general, for a complex ICS, there can be many possible attack

scenarios. We consider a generic attack to show the performance

of the proposed technique. We evaluate the proposed technique for

a range of network attack scenarios from benchmark attacks on

SWaT testbed [14]. These attacks cover a wide range of 36 attacks on

both sensors and actuators. Since the proposed technique extracts

the process skew for the physical properties, thus chemical sensors

are excluded from this study, leaving us with a total of 25 attacks

as detailed in Table 5 in Appendix. In general, an attack vector can

be defined as,

𝑦𝑘 = 𝑦𝑘 + 𝛿𝑘 , (1)

where 𝑦𝑘 are the real sensor measurement, 𝑦𝑘 is sensor measure-

ment with a possible attack and 𝛿𝑘 is the data injected by an attacker

at time step 𝑘 . The detail about each 𝛿𝑘 (attack vector) is described

in Table 5 in the Appendix where it can be seen that it ranges from

an abrupt injection of data to more slow/stealthy change in sensor

measurements.

3.3 Attack Execution

All the attacks which are taken from reference work [14], are exe-

cuted by compromising the Supervisory Control and Data Acquisi-

tion (SCADA) system.
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State (Inlet Flow | Outlet

Flow
1
)

Design Parameters Process Details

S1 ( 0 | 1 ) Outlet flow = 2.47𝑚3
/hr In this scenario, the water is being flown out of the tank 1 i.e.,

emptying process.

S2 ( 0 | 0 ) In this scenario, thewater level stays constant, i.e., static process.

S3 ( 1 | 0) Inlet flow = 2.54𝑚3
/hr In this scenario, the water is being flown into the tank 1. i.e.,

filling process.

S4 ( 1 | 1 ) Inlet flow = 2.54𝑚3
/hr and

Outlet flow = 2.47𝑚3
/hr

In this scenario, the water is being flown out and in of the tank 1

at the same time, i.e., both filling and emptying process.

1. If flow present it is 1 else 0.

Table 1: The tank1 in stage1 of the SWaT testbed has one inlet valve labeled as MV-101 and one outlet pump labeled as P-101.

Notice that there is a secondary backup pump also at the outlet labeled as P-102. Based on inflow and outflow there can be

four possible states for the level in tank1 based on input and output flow process.
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Figure 4: Level sensor in the SWaT testbed in stage 1 labelled

as LIT-101 under the normal operation. This figure shows

multiple runs of a physical process, e.g., water filling, wa-

ter flowing out, both or none of the previous process. Each

of these processes is labelled as S1 to S4, and the details are

given in Table 1.

4 DESIGN OF THE PROPOSED TECHNIQUE

In this section, all the components of the proposed technique are

discussed in detail.

4.1 Extracting the Process States

We begin by considering an example from the SWaT testbed. In

Figure 4, level sensor (LIT-101) measurements for a duration of nor-

mal process are shown. It can be seen that based on the inflow and

outflow, there can be four possible process states, i.e., S1: outflow

is present but no inflow, S2: neither inflow nor inflow, S3: inflow is

present but no outflow, S4: both input and output flow processes

are present. Table 1 shows a detailed description of the four possi-

ble process states in the water tank. Design parameters in Table 1

shows the design for the inflow and outflow process and which

process is present in a particular state.

The water treatment plant is run for seven days continuously

and the data for the normal operations of the plant is collected. In

Figure 5 four possible process states for the water level in tank1

are shown. This data presents the particular states extracted from

the seven days of the normal operation. There are hundreds of

occurrences for each process state. Different colors in the plot

represent different runs of the normal operation. The effects of the

noise are evident from the variability of the process slope.

Each process is expected to behave according to the design pa-

rameters as shown in Table 1. However, as we can visually see in

Figure 5 there are deviations due to the process noise. In Figure 5,

the first state S1 shows different runs of the water emptying process

from the tank1. We can see the variations in each process run due to

the sensor noise. This is also evident from the static (S2) and water

filling (S3, S4) processes. Having seen the deviations and noise in

these physical processes, the next step is to figure out the variation

due to the process offset from the design. To quantify the amount

of skew, we need to learn the process dynamics for all these states

under the designed set points.

4.2 Design based System Model

In Figure 7 the sensor measurements for the water filling process

and estimated sensor value based on the design are shown. The

accumulated offset is also labelled to make the visual sense of the

idea. A physical system diagram for stage 1 is shown in Figure 6.

Tank 1 in stage 1 of the SWaT testbed is being used as a running

example to demonstrate the idea. In Figure 6, it is shown that

the water level in the tank is measured using a level sensor and

the inflow and outflow of the water is being controlled by the

motorized valve (MV-101) at the input and pump (P-101) at the

output respectively. The idea is to model this inflow and outflow by

considering the physical principles and the design of the physical

process. Process skew information is extracted by figuring out the

process dynamics drift from the design due to the process noise.

For a tank, we know that the rate of change of water inside the

tank is equal to the difference between water flowing into the tank

and water flowing out from the tank with respect to time. We can

represent this using mass-balance equation [24] such as,

𝑑𝑉

𝑑𝑡
= 𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡

𝑑ℎ

𝑑𝑡
=
𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡

𝐴
since 𝑉 = 𝐴 × ℎ, (2)
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Figure 5: These sub-figures show four possible states of a physical process in a water tank, as described in Table 1. Level sensor

in the SWaT testbed in stage 1 labelled as LIT-101 under the normal operation.
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Figure 6: Modeling the process for the level sensor in Tank1.
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Figure 7: The idea of process skew. Water level sensor mea-

surement and its estimates using the model are shown. The

difference between both is defined as the offset.

where 𝑉 represents the volume of the tank, 𝐴 is the cross-sectional

area of the tank, and ℎ is the height of the water inside the tank,

(2) provides a linear equation, we can see the term [𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡 ]
represents the water flow which depends upon the PLC control

actions implemented via MV-101 and P-101. From Figure 6, it can

be seen that using the height and diameter of the tank from design

documents, it is possible to figure out the volume and the cross-

sectional area of the tank. Let us consider that state of the physical

process as the height of the water inside the tank. Then the solution

of this equation gives us the following result.

𝑥𝑘+1
= 𝑥𝑘 + 𝑢𝑘 ,

where𝑢𝑘 is the PLC control action. Here 𝑥𝑘 represents water level in

the tank at time 𝑘 . The control action𝑢𝑘 can be an either open/close

(for the motorized valve) or on/off (for the pump). Similarly, we can

describe the sensor state and we can get the set of system equations.{
𝑥𝑘+1

= 𝐴𝑥𝑘 + 𝐵𝑢𝑘 ,

𝑦𝑘 = 𝐶𝑥𝑘 .
(3)

Where𝑦𝑘 is the sensor measurement driven by the control action

𝑢𝑘 . Matrices 𝐴, 𝐵 and 𝐶 are the state-space matrices of appropriate

dimensions. From (3), it can be seen that if we have a system state

value at time 𝑘 , then given the PLC control 𝑢𝑘 we can predict the

next state at time 𝑘 +1. Table 1 shows a list of design parameters for

each type of control action. For example, S4 has the MV-101 control

as to open the valve and P-101 as turned on, given the information

of this control from PLC, we know from the design of the physical

process that how much the water level in the tank should increase.

However, as we will see, due to the process noise, there would be

deviations in the process states from what it was designed for.

4.3 Extracting the Process Offsets

Using the process design and the system of equations in (3), we

could extract the process skews, i.e., how much the real process

dynamics are offset from the designed physical process. In figure 8

we can see the offsets in the level of the water in tank1.

Definition 4.1. Process Offset: Deviation of the process dynam-
ics due to the process inaccuracies, from the design at each time step.

The process offsets are calculated at each time step for the time

while the process is active. All the process offsets are accumulated

over time and then process skew is extracted.

Definition 4.2. Process Skew: Slope of the accumulated process
offsets for a process activity time frame.

In Figure 8, we can see the accumulative offsets for the different

process states. S1 represents the case of water outflow from the tank.
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Figure 8: Water level offsets in the tank 1 for different states of the physical process.

A negative slope indicates that the real process is actually slower

than the designed parameters. S2 is the case when the process

is static and there is no inflow or outflow. Hence, the process is

missing, so no process skew exists. For the case of S3, only the

inflow is present and the positive slope shows that the real process

is actually faster than the designed one. S4 is the case when both

the inflow and outflow are present. In this case, it can be seen that

the real process is actually slower than the design. Now all these

physical state scenarios happen in the same physical process that

is, the water tank in stage 1 of the SWaT testbed. Although it’s

the same process, it is observed that based on the process skew

all the physical states of the process could be distinguished from

each other. This establishes a process fingerprint. However, one

important observation to make in Figure 8 is that the offsets are

noisy due to the sensor noise. The challenge here is to remove the

sensor noise effect without disturbing the process offsets. In the

following, a mathematical expression is derived for the process

skew. Consider the linear time-invariant model of the system with

sensor and process noise as{
𝑥∗
𝑘+1

= 𝐴𝑥∗
𝑘
+ 𝐵𝑢𝑘 + 𝑣𝑘 ,

𝑦∗
𝑘
= 𝐶𝑥∗

𝑘
+ 𝜂𝑘 ,

(4)

where 𝑦∗
𝑘
is the sensor measurement with the measurement noise

𝜂𝑘 and 𝑥∗
𝑘+1

is the system state.

Proposition 4.1. At each time step, the difference between sen-
sor measurements given by (4) and sensor measurement estimate
(by design) given by (3) is calculated to obtain the process offset as,
𝑦𝑘+1

− 𝑦∗
𝑘+1

= 𝐶𝐴[𝑂𝑘 ] − 𝐶𝑣𝑘 − 𝜂𝑘+1
, where 𝑂𝑘 = 𝑥𝑘 − 𝑥∗

𝑘
is the

offset.

Proof. The difference between (4) and (3)is given as,

𝑦𝑘+1
− 𝑦∗

𝑘+1
= 𝐶𝑥𝑘+1

−𝐶𝑥∗
𝑘+1

− 𝜂𝑘+1
, (5)

𝑦𝑘+1
− 𝑦∗

𝑘+1
= 𝐶𝐴𝑥𝑘 +𝐶𝐵𝑢𝑘 −𝐶𝐴𝑥∗

𝑘
−𝐶𝐵𝑢𝑘 −𝐶𝑣𝑘 − 𝜂𝑘+1

, (6)

𝑦𝑘+1
− 𝑦∗

𝑘+1
= 𝐶𝐴(𝑥𝑘 − 𝑥∗

𝑘
) −𝐶𝑣𝑘 − 𝜂𝑘+1

. (7)

As the offset is defined as the difference the real system state and

the estimated state of the system (𝑥𝑘 − 𝑥∗
𝑘
), it produces,

𝑦𝑘+1
− 𝑦∗

𝑘+1
= 𝐶𝐴[𝑂𝑘 ] −𝐶𝑣𝑘 − 𝜂𝑘+1

(8)

From (8) that the offset (𝑂𝑘 ) can be extracted at each time step. ■
From (8), it is observed that the process offset contains the noise

from the sensor; therefore, it is important to fit a straight line to

data to get the process skew. Since the process skew is the slope of

the accumulated process offsets, we need a straight line to represent

each of the above physical states. Towards that end, we resort to

the linear regression model for each process offset as evidently, the

offsets are linear in time.

4.4 Process Skew

To establish the linearity between the time and the progression of

the process, correlation coefficients are used. Correlation calculates

the level of the linear relationship between variables. If we have a

high correlation between two variables, then it means that the val-

ues for those increase or decrease in a linear relationship. However,

uncorrelated variables might still be dependent on each other it is

just that the relationship might be nonlinear. For 𝑁 scalar values

of two variables, the Pearson correlation coefficient is defined as,

𝜌 (𝑋,𝑌 ) =
∑𝑁
𝑖=1

(𝑋𝑖 − 𝑋 ) (𝑌𝑖 − 𝑌 )√∑𝑁
𝑖=1

(𝑋𝑖 − 𝑋 )2

√∑𝑁
𝑖=1

(𝑌𝑖 − 𝑌 )2

(9)

where 𝑋 is the mean of the variable X and 𝑌 is the mean of the

variable Y.We have found that the process data is linearly correlated

with the time as the process is linearly increasing or decreasing in

time. Linear regression approach is adopted to get the data models

describing the relationship between the variable in a mathematical

form. Least squares fit is used to obtain the model. For a set of

𝑛 observed values of X and Y given by 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) and
𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑛) respectively. These values for a system of linear

equations which can be represented in matrix form as,


𝑦1

𝑦2

.

.

.

𝑦𝑛


=


1 𝑥1

1 𝑥2

.

.

.
.
.
.

1 𝑥𝑛


[
𝛽0

𝛽1

]
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Figure 9: Linear regression model fit for the process skew

for a water filling process in Stage1 of the water treatment

system.

which can be simplified to,

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖, (10)

where 𝛽0 is the y-intercept, 𝛽1 is the slope/regression coefficient

and 𝜖 is the model error.

Figure 9 shows a linear model fitting through the process skew data.

This linear model is used to find the slope that defines the process

skew. Figure 9 shows a visual idea regarding the accuracy of the

linear model. To quantify the goodness of a system model, mean

square error (MSE) is used as a metric. In particular, one minus the

root mean square error (RMSE) defines the estimation accuracy or

best fit of a model,

𝑅𝑀𝑆𝐸 =

√∑𝑛
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2

𝑛
(11)

MSE is the difference between sensor measurement and sensor

measurement estimate squared and essentially gives the distance

between measured and estimated value or in other words, how

far the estimated value from the measured value is. The model

accuracies for the three stages of SWaT and corresponding process

states used in this study (from SWaT testbed) are shown in Table 2.

It can be seen that the obtained system model is very accurate, with

almost zero mean error for all the runs of a process. Table 2 shows

the mean of models created for all the runs of the process. The

process offsets are accumulated for the run of a process,

𝑂𝑎𝑐𝑐𝑢𝑚 =

𝑛∑
𝑘=1

(𝑂𝑘 ) (12)

and the corresponding process skew is given as,

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑠𝑘𝑒𝑤 =
𝑑 (𝑂𝑎𝑐𝑐𝑢𝑚)

𝑑𝑡
. (13)

4.5 Skew Uniqueness

In Figure 10, process skew distribution for all the eight physical

processes in the three stages of the SWaT testbed is shown. It can

be observed that all the processes can be uniquely distinguished
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Figure 10: Process skew distribution for all the eight physi-

cal processes in the three stages of SWaT testbed.

based on the process skew profile. Figure 10 shows a visual anal-

ysis for process skew uniqueness; however, we will see a mathe-

matical proof for the skew uniqueness. It is imperative to study

that fingerprints are information-theoretically unique in order to

negate the possibility of impersonation attacks. An attacker can

use skews of her processes to design compromises. Let 𝑤 (𝑡) be
the signal corresponding to a process skew. In order to present an

information-theoretic analysis on the top, we study justification of

two important criteria:

(1) mutual information between skews as recorded for the same

process, i.e., in successive operations should be high, ≈ 1,

and

(2) conditional entropy of skewswith other process skews should

be very low, «1.

Figure 11: Mutual information across eight process skews.

In order to investigate these relations mutual information, 𝐼 (·),
for process 𝑖 is defined as

𝐼 (𝑤𝑖 𝑗 ,𝑤𝑖𝑘 ) = 𝐻 (𝑤𝑖 𝑗 ) − 𝐻 (𝑤𝑖 𝑗 |𝑤𝑖𝑘 )
where 𝑖 ∈ 1 : 𝑆, 𝑗 ∈ 1 : 𝑁,𝐻 (𝑤𝑖 𝑗 ) is the entropy of 𝑗th attempt by

a process 𝑖 and 𝐻 (𝑤𝑖 𝑗 |𝑤𝑖𝑘 ) is conditional entropy of 𝑖th process

for 𝑗th attempt, given the features of 𝑘th attempt. For high recall,

mutual information for each of the process skew should be close
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Table 2: Validation of the linear regression model to find a good fit for the process offset to find the process skew.

Metric Stage 1 Stage 3 Stage 4
2

I.F. Only O.F. Only I.F. and O.F.
3

I.F. Only O.F. Only I.F. and O.F. O.F. Only I.F. and O.F.

Avg. [RMSE] 8.6e-15 2.9e-14 1.09e-13 3.33e-15 1.56e-14 6.37e-14 2.31e-14 2.05e-13

Avg. [(1 - RMSE)*100%] 100% 100% 100% 100% 100% 100% 100% 100%

2. Stage4 process outlet is always active, therefore, no I.F. only case.

3. I.F. stands for inflow and O.F. for outflow.

to 1 (normalized). Similarly, an ICS process 𝑖 should not have ac-

cess to any extra information about process 𝑡 given observations

of its own. Mathematically this can be quantified in conditional

entropy as 𝐻 (𝑤𝑖 𝑗 |𝑤𝑡𝑘 ) → 0 for 𝑖, 𝑡 ∈ 1 : 𝑆 and 𝑗, 𝑘 ∈ 1 : 𝑁 . We

evaluated entropy measure and mutual information for each of

the process skews as proposed in [7]. As can be seen in Figure 11,

mutual information across 8 process skews are fairly low, < 0.1,

which supports the use case. The entropy of each of the skews was

recorded to be ≥ 0.94 . Further, the investigation of conditional

entropy across different processes of the ICS system reveals that

features are independent.

4.6 Cumulative Sum (CUSUM) Detector

The process skews for different runs of a particular process; for

example, a water filling process is accumulated. The process skew

vector is given as an input to the CUSUM procedure, also known

as the stateful detector. The input to the CUSUM procedure can

be considered as a distance measure, i.e., a measure of how far the

estimate is from the expected measurements. A dedicated detector

for each process is designed. The index 𝑖 denotes the process, 𝑖 ∈
I := {1, 2, . . . ,𝑚}, where m is the number of processes in each stage

of the plant. Process skew is labelled as 𝑟𝑘,𝑖 here for easy reference,

where 𝑘 is the time step. The standard CUSUM [20] procedure is

explained using the following equations.

CUSUM: 𝑆−
0,𝑖

= 𝑇𝑖 , 𝑆+
0,𝑖

= 𝑇𝑖 , ˜𝑘+
𝑖
= 0,

˜𝑘−
𝑖
= 0,{

𝑆+
𝑘,𝑖

= max(𝑇𝑖 , 𝑆+𝑘−1,𝑖
+ 𝑟𝑘,𝑖 −𝑇𝑖 − 𝜅𝑖 ), if 𝑆+

𝑘−1,𝑖
≤ 𝜏+

𝑖
,

𝑆+
𝑘,𝑖

= 𝑇𝑖 and
˜𝑘+
𝑖
= ˜𝑘+

𝑖
+ 1, if 𝑆+

𝑘−1,𝑖
> 𝜏+

𝑖
.

(14)

{
𝑆−
𝑘,𝑖

= min(𝑇𝑖 , 𝑆−𝑘−1,𝑖
+ 𝑟𝑘,𝑖 −𝑇𝑖 + 𝜅𝑖 ), if 𝑆−

𝑘−1,𝑖
≥ 𝜏−

𝑖
,

𝑆−
𝑘,𝑖

= 𝑇𝑖 and
˜𝑘−
𝑖
= ˜𝑘−

𝑖
+ 1, if 𝑆−

𝑘−1,𝑖
< 𝜏−

𝑖
.

(15)

Design parameters: Bias 𝜅𝑖 > 0; threshold 𝜏𝑖 > 0.

Output: 𝐴𝑙𝑎𝑟𝑚(𝑠) = ˜𝑘+
𝑖
+ ˜𝑘−

𝑖
.

From (14)-(15), it can be observed that 𝑆+
𝑘,𝑖

and 𝑆−
𝑘,𝑖

accumulate the

distance measure 𝑟𝑘,𝑖 over time to measure how far are the values of

the residual from the target mean (𝑇𝑖 ). To tune the CUSUM detector

there is also a slack variable 𝜅 chosen to be
1

2
∗ 𝜎𝑖 in this study.

𝜏𝑖 = ±Γ ∗ 𝜎𝑖 , where Γ is a multiplier to the standard deviation (𝜎)

and usually taken between 3 and 5 [20]. An alarm is raised when

this accumulation becomes greater or less than a chosen threshold

𝜏𝑖 . The sequence 𝑆𝑘,𝑖 is reset to the target mean value each time

it becomes negative or larger than 𝜏𝑖 . If 𝑟𝑘 , 𝑖 is tightly bounded

and 𝜅𝑖 is not sufficiently large, the CUSUM sequence 𝑆𝑘,𝑖 grows

unbounded until the threshold 𝜏𝑖 is reached, no matter how large 𝜏𝑖

is set. In order to prevent such drifts, the slack variable 𝜅𝑖 must be

selected properly based on the statistical properties of the distance

measure. Once 𝜅 is chosen, the threshold 𝜏𝑖 must be selected to

achieve a required false alarm rate A∗
𝑖
. A𝑖 ∈ [0, 1] denotes the

false alarm rate for the CUSUM procedure defined as the expected

proportion of observations which are false alarms [1, 30].

5 EVALUATION

The proposed technique is evaluated in a real water treatment

testbed. The following metrics are used for performance evaluation.

We define𝑇𝑃𝑖 as true positive for class 𝑐𝑖 when it is rightly classified

based on the ground truth. False-negative 𝐹𝑁𝑖 is defined as the

wrongly rejected, and False positive 𝐹𝑃𝑖 as wrongly accepted. True

negative 𝑇𝑁𝑖 is the rightly rejected class. The True Positive Rate

(TPR) and False Positive Rate (FPR) are defined as follows:

True Positive Rate (TPR) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 1 − 𝐹𝑁𝑅, (16)

False Positive Rate (FPR) =
𝐹𝑃

𝐹𝑃 +𝑇𝑁 = 1 −𝑇𝑁𝑅. (17)

Ideally, FPR should be as small as possible and TPR as high as

possible. Both TPR and FPR being ratios range between 0 and 1.

5.1 Normal Operation

For the normal operation data from the SWaT testbed is collected

for a period of seven days. During the normal operation, the plant

was run continuously under the normal conditions and as it was

designed to operate. The operating conditions from the design was

already presented in Table 1. For all the possible process states,

data is extracted. Process offsets are extracted for each process in

Stage1, Stage3 and Stage4 of the SWaT testbed. Stage2 and Stage5

is constituted of chemical sensors and reverse osmosis process

respectively; therefore, those two stages are not considered in this

study. This work is focused on studying the physical properties

of the process. Studying the chemical properties of the process is

out of the scope of this work. During seven days, water filling or

the emptying process happened hundred of times. Process offsets

are calculated for each of these process runs. Process offsets are

noisy due to the noise from the sensors. A linear regression model

is fit to handle the noise in the signal. After the linear model is

fitted, we obtain a straight line for accumulated process offsets over

process time frame. The rate of change of these process offsets

is defined as the process skew. Figure 8 shows process offsets for

different process states of the Stage1 of the SWaT testbed. Figure 9

shows an example of linear model fitting for the process offsets.

The obtained linear model can be used to calculate process skews.

Normal process skews are used with a CUSUM detector to establish
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Table 3: Design and performance of CUSUM detector on the normal data. 𝜇 and 𝜎 are mean and standard deviation of the

process skews.

Parameters Stage 1 Stage 3 Stage 4

I.F. Only O.F. Only I.F. and O.F. I.F. Only O.F. Only I.F. and O.F. O.F. Only I.F. and O.F.

𝜅 0.0013 0.0017 7.27e-04 0.0217 7.90e-04 0.0014 0.0027 0.0012

𝜏 0.0102 0.0219 0.0073 0.1083 0.0126 0.0199 0.0277 0.0148

𝜇 0.0070 -0.0288 -0.0113 0.0082 -0.0161 0.0146 -0.0277 -0.0327

𝜎 0.0026 0.0034 0.0015 0.0433 0.0016 0.0028 0.0054 0.0025

TNR 96.04% 97.46% 97.10% 96.99% 96.97% 96.38% 97.39% 95.31%

FPR 3.96% 2.54% 2.90% 3.01% 3.03% 3.62% 2.61% 4.69%

a fingerprint for each process. The detailed CUSUM parameters

for all the stages in SWaT are shown in Table 3. All the thresholds

and other parameters are designed to have a desired false alarm

rate of less than 5%. Table 3 shows bias parameter 𝜅, threshold

𝜏 , mean 𝜇 and standard deviation 𝜎 for the process skews. In the

last two rows of the Table 3 performance of the CUSUM under the

normal operating conditions are shown using the design parameters

specified. It can be observed that for all the casesthe the desired

false alarm rate is below 5%.

RQ1: Can process skews be used to fingerprint each process state?
Table 3 shows a high true negative rate meaning it is possible to

identify each process state with a high accuracy based on the pro-

cess skew fingerprint. A physical process goes through different

process states during the operation of the process plant. For ex-

ample, for the process of a fluid tank, either fluid is flowing out,

flowing in, both or in a static state. Since different process states

have different skews, it is possible to uniquely identify each process

state based on its process skew fingerprint.

RQ2: Does a process skew depends on the initial conditions of a process
dynamics? This means that, does it matter at what initial state the

process starts. For example, does it matter if the water filling process

starts at 500 mm or 800 mm water levels? In this study, a particular

process, for example, a water filling process started at different

initial states depending on the control logic. The results presented

in Table 3 is a combination of all possible initial conditions of a

particular process and a fingerprint is created for all the runs of the

process taken together. It can be seen from Table 3 that the process

skew based fingerprint is stable over a range of process start and

end conditions, making it robust to use in a real-world system.

5.2 Attack Detection

RQ3: Can the proposed process skew based fingerprint be used as an at-
tack detection method? The performance of the proposed technique

as an attack detection method is evaluated under a range of attack

data collected from SWaT testbed. SWaT was subject to different

attack scenarios for four days. This is to say that for four days there

were a lot of runs of normal operation and then there were attack

instances in between. A complete list of attacks is shown in Table 5

in the Appendix. An example of process skews for the process of

tank4 in stage4 is shown in Figure 12. From Figure 12 it is evident

that using process offsets and skews, it is easy to detect attacks. The

attack scenarios deviate from the normal process offsets. Note that

there are attack start and attack stop markers. In some cases when

the attack was stopped the slope of the process offset, which is

Figure 12: LIT-401 Process Offsets under attacks. This is a

mix of normal process and few attacks. Normal offsets are

close together and follow the normal profile of the process.

However, there are clear deviations for the attacks as labeled

in the figure.
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process. Using the CUSUM detector on process skews, the

attacks are evident.
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Table 4: Evaluation of the proposed technique on the attack data from SWaT testbed. TPR presents the attacks which were

detected accurately as percentage (attacks-detected/total-attacks-executed).

Metrics Stage 1 Stage 3 Stage 4

I.F. Only O.F. Only I.F. and O.F. I.F. Only O.F. Only I.F. and O.F. O.F. Only I.F. and O.F.

TPR 100%(3/3) 100%(4/4) 100%(1/1) 100% (1/1) 100%(3/3) 100%(7/7) 100(2/2)% 100(5/5)%

FPR 3.2%(4/125) 1.65%(2/121) 8.06%(10/124) 5.08% (9/177) 4.58%(7/153) 6.04% (13/215) 0.92%(2/217) 10.70%(23/215)

Lower Limit

Upper Limit

Attack Start

Attack Stop

Cumulative 

Effect of Attack

Figure 14: Stealthy attack on the level sensor in Stage1 of the

SWaT testbed. The Stealthy attack is designed to spoof the

values of the level sensor measurements so that the residual

shown on the right does not surpass the threshold.

process skew tends to go back to normal as expected, but the whole

offset has deviated for the overall process. Figure 13 shows the

CUSUM detector for the same process. From Figure 13, we can see

that it is easy to see how process skews can enable attack detection.

However, a detailed analysis is carried out for all the three stages

and corresponding processes in the SWaT testbed and results are

presented in Table 4. We can see that all the attacks are detected

in all the scenarios with 100% TPR. FPR is close to the desired 5%

false alarm rate except for two instances. Process skew has shown

perfect performance on attack detection.

6 DISCUSSION

6.1 A Comparison with Model based Detectors

Can process skew fingerprint be used to detect attacks those are
stealthy for the model based detectors [3, 5, 6]?
Figure 14 shows the execution of such an attack on the SWaT

testbed. On the left-hand plot, actual measurements and sensor

estimates obtained from level sensor, LIT-101, using the system

model have been plotted. On the right-hand side, respective residual

(measured - estimated) values for the level sensor are shown. Upper

and lower limits for a statistical detector can be seen. On the left-

hand plot, the dotted green line shows the ground truth for the

process state, while the attacker spoofed the sensor values and

managed to derive the system away from the normal operation

overtime during the attack period. The spoofed values are chosen

such that the residual values never grow bigger than a model-based

detector threshold and hence, could not get detected. But from the

ground truth, we know that the process dynamics are not what

the attacker is making PLC to believe. Using process skew, it is

possible to detect the presence of such an attacker. The idea is if an

attacker wants to deviate the process from its desired operation, it

must defy the process dynamics and expose itself to process skew.

In comparison, it can be concluded that the proposed process skew

based technique can detect attacks that are stealthy for the system

model based detectors.

6.2 Scalability

This case study is carried out on a water treatment plant but we

believe that the technique itself is generalizable. The physical pro-

cess discussed in this work is water/fluid dynamics, but there are

other similar processes, e.g., gas or other chemical fluids where the

same techniques should work. Moreover, in this work, a range of

different processes and process states are considered that points

towards its scalability. On the top of it, the demonstration on a real

system highlights its applicability in real-world applications.

7 CONCLUSIONS

We demonstrated that indeed a process skew exists for each process

due to the deviations in the process from the design. The proposed

technique can be used to fingerprint the different process states,

for example, filling, emptying, or a combination of these process

dynamics in a water treatment system. Hence, it is possible to detect

attacks on the processes. An extensive evaluation of the proposed

technique on a real-world water treatment system validates its

applicability and practicality.

While carrying out this study, some useful observations have

beenmade regarding the process transients.When a process changes

from one state to another, the process dynamics are said to be in a

transient state and it takes time to reach a steady-state. In the future,

we would like to explore this transient feature of the processes for

attack detection.
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Table 5: Executed Attacks on SWaT Testbed from reference [14]

Attack Se-

quence Number

Start Time End Time Attack Point Start State Attack Expected Impact or

Attacker Intent

1 28/12/2015

10:29:14

10:44:53 MV-101 MV-101 is

closed

Open MV-101 Tank overflow

2 28/12/2015

10:51:08

10:58:30 P-102 P-101 is on

where as P-102

is off

Turn on P-102 Pipe bursts

3 28/12/2015

11:22:00

11:28:22 LIT-101 Water level be-

tween L and H

Increase by 1 mm

every second

Tank Underflow;

Damage P-101

7 28/12/2015

12:08:25

12:15:33 LIT-301 Water level be-

tween L and H

Water level in-

creased above

HH

Stop of inflow; Tank

underflow; Damage

P-301

8 28/12/2015

13:10:10

13:26:13 DPIT-301 Value of DPIT is

<40kpa

Set value of DPIT as

>40kpa

Backwash process

is started again

and again; Normal

operation stops;

Decrease in water

level of tank 401.

Increase in water

level of tank 301

10 28/12/2015

14:16:20

14:19:00 FIT-401 Value of FIT-401

above 1

Set value of FIT-401

as <0.7

UV shutdown; P-

501 turns off; UV

did not shutdown;

P-501 did not turn

off

11 28/12/2015

14:19:00

14:28:20 FIT-401 Value of FIT-401

above 1

Set value of FIT-401

as 0

UV shutdown; P-

501 turns off

13 29/12/2015

11:11:25

11:15:17 MV-304 MV-304 is open Close MV-304 Halt of stage 3 be-

cause change in the

backwash process

14 29/12/2015

11:35:40

11:42:50 Mv-303 MV-303 is

closed

Do not let MV-303

open

Halt of stage 3 be-

cause change in the

backwash process

16 29/12/2015

11:57:25

12:02:00 LIT-301 Water level be-

tween L and H

Decrease water

level by 1mm each

second

Tank Overflow

17 29/12/2015

14:38:12

14:50:08 MV-303 MV-303 is

Closed

Do not let MV-303

open

Halt of stage 3 be-

cause change in the

backwash process

21 29/12/2015

18:30:00

18:42:00 MV-101, LIT-

101

MV-101 is

open; LIT-101

between L and

H

Keep MV-101 on

continuously; Value

of LIT-101 set as 700

mm

Tank overflow

22 29/12/2015

22:55:18

23:03:00 UV-401, AIT-

502, P-501

UV-01 is on;

AIT-502 is <150;

P-501 is open

Stop UV-401; Value

of AIT502 set as

150; Force P-501 to

remain on

Possible damage to

RO

25 30/12/2015

10:01:50

10:12:01 LIT-401, P-401 Value of LIT-401

<1000; P-402 is

on

Set value of LIT-401

as 1000; P402 is kept

on

Tank underflow

26 30/12/2015

17:04:56

17:29:00 P-101, LIT-301 P-101 is off; P-

102 is on; LIT-

301 is between L

and H

P-101 is turned on

continuously; Set

value of LIT-301 as

801 mm

Tank 101 under-

flow; Tank 301

overflow

27 31/12/2015

01:17:08

01:45:18 P-302, LIT-401 P302 is on,

LIT401 Is be-

tween L and

H

Keep P-302 on con-

tinuously; Value of

LIT401 set as 600

mm till 1:26:01

Tank overflow

30 31/12/2015

15:47:40

16:07:10 LIT-101, P-101,

MV-201

P-101 is off; MV-

101 is off; MV-

201 is off; LIT-

101 is between

L and H; LIT-

301 is between L

and H

Turn P-101 on

continuously; Turn

MV-101 on continu-

ously; Set value of

LIT-101 as 700 mm;

P-102 started itself

because LIT301

level became low

Tank 101 under-

flow; Tank 301

overflow

31 31/12/2015

22:05:34

22:11:40 LIT-401 Water level be-

tween L and H

Set LIT-401 to less

than L

Tank overflow

32 1/01/2016

10:36:00

10:46:00 LIT-301 Water level be-

tween L and H

Set LIT-301 to

above HH

Tank underflow;

Damage P-302

33 1/01/2016

14:21:12

14:28:35 LIT-101 Water level be-

tween L and H

Set LIT-101 to

above H

Tank underflow;

Damage P-101

35 1/01/2016

17:18:56

17:26:56 P-101; P-102 P-101 is on; P-

102 is off

Turn P-101 off;

Keep P-102 off

Stops outflow

36 1/01/2016

22:16:01

22:25:00 LIT-101 Water level be-

tween L and H

Set LIT-101 to less

than LL

Tank overflow

39 2/01/2015

11:43:48

11:50:28 FIT-401, AIT-

502

In Normal

Range

Set value of FIT-401

as 0.5; Set value of

AIT-502 as 140 mV

UV will shut down

and water will go to

RO UV did not shut-

down

40 2/01/2015

11:51:42

11:56:38 FIT-401 In Normal

Range

Set value of FIT-401

as 0

UV will shut down

and water will go

to RO P-402 did not

close, both should

be interlinked

41 2/01/2015

13:13:02

13:40:56 LIT-301 Water level be-

tween L and H

decrease value by

0.5 mm per second

Tank overflow Rate

of decrease in water

level reduced after

1:33:25 PM
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