Hacksaw: Biometric-Free Non-Stop Web Authentication
in an Emerging World of Wearables

Prakash Shrestha

University of Alabama at Birmingham

prakashs@uab.edu
ABSTRACT

The currently deployed web authentication model, involving only
entry-point authentication of users, does not do anything to protect
against account takeover attacks. Once the attacker has compro-
mised the entry-point authentication method, such as by learning
a user’s password or even two-factor authentication credentials via
widely exploited mechanisms such as phishing and password data-
base breaches, or has hijacked a login session, he can fully access
and abuse the user’s account and associated services. To respond
to this critical vulnerability, we introduce the notion of non-stop
post-entry authentication, to be integrated with any entry-point au-
thentication method, using which the web service can proactively
authenticate the user throughout the login session invisibly in the
background without explicit user involvement and without the
need for storing user-specific templates (like in biometric systems)
thereby preserving user privacy.

We design a transparent and privacy-preserving non-stop au-
thentication system, called Hacksaw, using a wrist-worn personal
wearable device that authenticates the user continually by corre-
lating the input events on the website (e.g., keyboard and mouse
activities) with the user’s corresponding hand movements captured
via the device’s motion sensors. Specifically, at its core, Hacksaw’s
correlation algorithm computes the cosine similarity of the hand
gesture with the stored generic (i.e., non user-specific) templates of
input gestures. We build an instance of Hacksaw’s implementation
on an Android smartwatch as the wearable and desktops/laptops as
the client terminals, and comprehensively evaluate it under benign
and adversarial settings. Our results suggest that Hacksaw can keep
the legitimate users logged into their accounts for long durations,
while promptly detecting or automatically deauthenticating remote
and proximity attackers attempting to take over the users’ account
following the compromise of the initial login credentials or hijack-
ing of the login session. Given that wrist-worn wearable devices are
already increasingly used in many domains of daily lives (including
security applications), we believe that Hacksaw can be incorporated
to the current web authentication model, especially to sensitive web
services such as banking or e-commerce, to significantly improve
its security against online fraud, without additional effort from the
users and without degrading user privacy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8006-5/20/07...$15.00
https://doi.org/10.1145/3395351.3399366

13

Nitesh Saxena
University of Alabama at Birmingham
saxena@uab.edu

CCS CONCEPTS

« Security and privacy — Authentication.

KEYWORDS
Non-Stop Authentication, Account Takeover, Wrist-Worn Wearable

ACM Reference Format:

Prakash Shrestha and Nitesh Saxena. 2020. Hacksaw: Biometric-Free Non-
Stop Web Authentication in an Emerging World of Wearables. In 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec
’20), July 8-10, 2020, Linz (Virtual Event), Austria. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3395351.3399366

1 INTRODUCTION

User authentication is undoubtedly one of the most crucial security
components of any online service. It is supposed to allow the web
service to ensure that only the legitimate, pre-registered users can
gain access to their web accounts. The most commonly deployed
form of web authentication uses passwords, either alone, or in com-
bination with a second factor such as a mobile phone or a hardware
token for improved security (i.e., two-factor authentication or TFA).

These almost universally deployed authentication schemes, by
the nature of their design, only offer entry-point authentication or
one-time, initial authentication, allowing the user to remain authen-
ticated until the user manually logs out (i.e., ‘deauthenticates’) him-
self, or the session gets expired (i.e., ‘times out’) after a sufficiently
long period of inactivity. Unfortunately, many of the widely de-
ployed entry-point authentication schemes, i.e., passwords and TFA,
get compromised relatively easily on a routine basis, for instance,
through the leakage of passwords via phishing attacks or hacked
password databases, hacking of TFA schemes (e.g., through phish-
ing attacks [20, 34, 44], man-in-the-browser and man-in-the-mobile
attacks utilizing cross-platform services [9, 24]), or web session
hijacking attacks (e.g., through session sniffing, cross-site scripting,
malicious JavaScript codes, and man-in-the-middle attacks [7, 22]).
Further, widely-used hardware token based TFA schemes (e.g., FIDO
U2F [3]) are also vulnerable to a man-in-the-machine attack [6].
Once the initial authentication method has been compromised, the
attacker (either remote, or proximity-based) can take over the user’s
web account, allowing the attacker complete freedom to abuse the
account and the associated services.

Such a threat of unauthorized access through account takeover
is highly prevalent in the online scenario. Also, the consequences of
such web account takeover can be very devastating in practice. For
example, the attacker with access to user’s online account can take
critical actions on the user’s behalf (e.g., transfer funds from the
bank account, make hefty purchases or send crafted emails), snoop
through user’s personal information, steal user’s sensitive data, and
modify or delete user’s online data [2, 11, 12, 15, 16, 30, 31]. Given

https://doi.org/10.1145/3395351.3399366
https://doi.org/10.1145/3395351.3399366

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

the severity of the threat of online account takeovers, it is clear that
the currently deployed web authentication model involving only
the entry-point authentication is insufficient. In other words, it has
become paramount to adopt a post-entry authentication mechanism
that continues to transparently recognize an already logged in user
in (ideally) a non-stop manner, i.e., while the user is accessing the
account, and potentially promptly deauthenticate the user or take
another preventive measure if an account takeover is detected.

In this paper, we propose a transparent and privacy-preserving
post-entry non-stop authentication system for the online scenario
that can effectively thwart the account takeover threat. Specifically,
we propose Hacksaw, 1, a non-stop authentication scheme based
on a wrist-wearable, a wrist-worn device (e.g., a watch/bracelet). In
Hacksaw, once the user logs into his online account using any of the
standard entry-point authentication methods, the corresponding
web-server continuously, yet transparently, verifies the legitimacy
of the user by correlating the sequence of events observed on the on-
line account (e.g., keyboard/mouse interactions) with the sequence
of events inferred based on the wrist-motions captured by the wrist-
wearable. If these two activities do not match, when a different user
(attacker) accesses the online account while the victim user is per-
forming other hand activities, Hacksaw takes proactive actions by
either putting the account into a “restricted access state”, alerting
the user with some out of band mechanisms, or promptly deau-
thenticating the user. Hacksaw is designed to defeat both (targeted
or untargeted) remote as well as proximity-based attacks that may
attempt to take over the user’s account following the compromise
of initial authentication credentials, without user’s knowledge.

Although Hacksaw utilizes wrist-movements captured by the
wrist-wearable for post-entry non-stop authentication, it is not
a biometric scheme because it does not rely on the user-intrinsic
wrist-movements, rather, Hacksaw continuously re-authenticates
the user by correlating the interactions observed on the terminal
with the wrist-movements of the user. Given this, Hacksaw does not
store any sensitive information about the user (unlike traditional
biometrics schemes), and hence preserves the privacy of the user
with respect to the leakage of authentication templates.

Hacksaw requires the user to wear a wrist-wearable equipped
with motion sensors (e.g., accelerometer and gyroscope) on his
mouse handling hand. The wrist-wearable is a personal device and
is registered to the user’s online account (or web-server). Hacksaw
can work in conjunction with any of the other initial authentication
schemes (e.g., the password or the TFA schemes) implemented in an
online account. Although the web services can be accessed through
various types of client terminals and non-stop authentication is
important for all these devices, our focus in this work is on the
desktop and laptop terminals. Since Hacksaw is a high-security
authentication scheme, we do not envision that it would be deployed
on all web services, but we expect it to be adopted on several of
them especially those that are highly sensitive (such as banking or
e-commerce based). The same wearable device may be used as a
second factor as part of traditional entry-point TFA (e.g., using one-
time PINs or active sounds [39]) as well as for Hacksaw post-entry
authentication.

'HACKSAW denotes HACK-resistant non-Stop Authentication for the Web using
wearable devices. It can be viewed as a “saw” against web account “hacks”.

14

Prakash Shrestha and Nitesh Saxena

Our Contributions: We make the following contributions:

(1) A New Non-Stop Authentication Notion for the Web based
on a Wearable Device: We introduce the idea of transparent
and privacy-preserving non-stop authentication for the web
based on a wrist-worn wearable device, giving rise to a concrete
instantiation, the Hacksaw system.

(2) Design and Implementation of Hacksaw: We design and im-

plement an instance of Hacksaw for an Android smartwatch

and the Chrome browser, geared for desktop and laptop. Our
scheme does not require any browser plugins or changes to the
browser. Our concrete design is based on the correlation of the
interactions observed on the website with the wrist-movements
captured by a wrist-worn wearable device. At its core, Hacksaw
infers a wrist-motion to an interaction by computing its cosine
similarity with the stored interaction templates generated from
a random group of users (no user-specific templates are needed).

(3) Evaluation in Benign and Adversarial Scenarios: We evalu-
ate Hacksaw for authentication/deauthentication errors in both
benign and adversarial settings based on the wrist motion data
collected from 25 volunteer participants while they performed
a web-form filling task. Our results show that Hacksaw can ef-
fectively identify the authorized users and promptly recognize
the remote or proximity adversaries (within 15-20 seconds in
most cases). Based on these results, we believe that Hacksaw is
a viable mechanism of seamless non-stop authentication that
can resist most real-world attacks.

2 SYSTEM AND ADVERSARIAL MODELS
2.1 System Model

Hacksaw considers an online non-stop authentication system based
on a wrist-worn wearable device W (e.g., watch, bracelet). Hacksaw
assumes that the user U has an online account OA with a remote
web-service (e.g., banking, credit card, email, healthcare, utility,
etc.). U wears W when accessing his OA through a web-browser
(e.g., Mozilla Firefox, Google Chrome, etc.) on a terminal. Hacksaw
assumes that there exists a separate initial authentication system
(e.g., the ones based on username and password) that U uses to log
in to OA. Once U logs in to his OA, Hacksaw continuously verifies
that the current U is the same U who has initially logged in. When
a different U attempts to use OA, Hacksaw takes proactive actions
such as putting the account into a “restricted access state”, alerting
U with some out of band mechanisms, or logging out the current
U, thereby preventing OA misuse. Hacksaw does so by correlating
observed activities on O.A with the activities inferred based on the
wrist-motion captured by the W device.

In this study, we focus on the desktop PC and laptop. Specifically,
we assume that U utilizes either a desktop PC with an external
keyboard and a mouse (i.e., the desktop setting), or laptop with a
built-in keyboard and touchpad (i.e., the laptop setting) to access
his OA. Instead of using the built-in touchpad, U may also use the
external mouse with the laptop. This setup will be similar to our
desktop scenario. We also assume that each U owns a W device
equipped with accelerometer and gyroscope sensors and a wireless
radio (e.g., Bluetooth) that it uses to communicate with its com-
panion device, i.e., the smartphone P. Many of today’s W devices

Hacksaw: Biometric-Free Wearable Non-Stop Web Authentication

meets this assumption. For instance, W devices like fitness bands
from Fitbit [21], smartwatches such as LG G Watch R [25], Sony
SmartWatch [41], etc., work in conjunction with the P device, and
all communication between them typically goes through Bluetooth.
They usually come with on-board accelerometer and gyroscope
sensors and can have long battery life.

We assume that U wears W on his mouse holding hand, i.e., the
hand used for controlling the mouse. Further, we assume W as a
personal device and U does not share it with anyone. Moreover, we
assume that W and P are already registered to OA, and they share
an encryption key that they can use to secure their communication.
The registration of W and P is a one-time task, and during this
process, they share a secret encryption key. We also assume that all
communication between devices involved in Hacksaw is secured
by a secure cryptographic mechanism (e.g., HTTPS, SSL, TLS, etc.).

2.2 Adversarial Model

In an online scenario, account takeover threat, i.e., gaining unau-
thorized access to OA, is quite popular. With such unauthorized
access, the adversary can perform various nefarious activities, e.g.,
banking transaction or an online purchase, on behalf of the user.
Hacksaw is designed to thwart such unauthorized access to OA.
Hacksaw considers two types of adversaries — remote attacker and
proximity attacker, as described below.

(1) Remote Attacker: We consider a remote attacker who has
gained unauthorized access to OA and attempts to misuse it re-
motely at a random point in time. To take over OA, a remote at-
tacker can hack into the initial authentication token of victim’s O.A
or hijack his online web-session. Secure OA often implements a
TFA mechanism to make their system secure. Most commonly used
form of TFA requires one extra authentication token (e.g., a PIN
sent/generated on the user’s phone) in addition to the password to
authenticate to OA. Both of these authentication tokens can be com-
promised through phishing [20, 34, 44], man-in-the-browser and
man-in-the-mobile attack utilizing cross-platform services [9, 24],
or by other means. Besides targeting the initial authentication, a
remote attacker can also steal or predict a valid web-session key to
gain unauthorized access to O.A. OA typically maintains a session
key, also known as session ID, to authenticate the user throughout
the user’s interaction with the account. This session token can be
compromised through session sniffing, cross-site scripting, mali-
cious JavaScript codes, and man-in-the-middle attack [7, 22]. Such
a session hijacking attack is prevalent in the online setting. Fur-
ther, we assume that the attacker can compromise U’s terminal (or
browser) and manipulate the input generation by tampering the
JavaScript modules related to Hacksaw. However, the manipulated
inputs would likely not match with the user’s wrist activities, and
the attack would likely fail.

Given the remote nature of the attack, the attacker remains far-
off from the W’s locality and does not have any clue what U might
be doing. Based on the real-life activities of U, we consider various
scenarios for the remote attack. For instance, we consider a scenario
where U is using his personal computer or his laptop at home or
other places. We term this as using-terminal scenario. We also
consider using-phone scenario where U is using his mobile phone
for various purposes such as reading/writing a text, playing games,
etc. Next, we consider the writing scenario where U performs a

15

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

hand-writing task. In daily life, U also performs walking activities
so we consider the attack setting with the walking scenario. Further,
we consider miscellaneous wrist activities that represent an attack
scenario where U is having a conversation with his colleagues while
standing or sitting on a chair/sofa and moving his hand for random
activities. During these activities, we assume that U is wearing W.
(2) Proximity Attacker: We also consider a proximity attacker
who has compromised OA similar to a remote attacker, but he tries
to access OA when he is nearby U. A proximity attacker can use
the approach similar to the one used by the remote attacker to take
over OA. Given the fact that users often forgot to log out their
accounts and lock their terminals, the proximity attacker can also
wait for the targeted U to leave the terminal without logging out
of the account. To address such a case, OA generally implements a
time-out based approach where the logged in U is deauthenticated
after a sufficiently long period of inactivity. During this inactivity
period, anyone can have access to U’s terminal and his OA.

As the proximity attacker remains nearby U, we assume that he
can have audio-visual cues on U’s activities. Further, we assume
that the proximity attacker is clever and tries to access OA when U
is using his desktop PC or laptop. In such a scenario, the proximity
attacker can clearly see (or hear) U interacting with the terminal.
Based on the observed interactions, the proximity attacker attempts
to mimic W’s activities to fool the Hacksaw system into treating him
as a legitimate U. Moreover, we assume that the proximity attacker
employs the opportunistic strategy as proposed in [19] to break
the security of Hacksaw. Specifically, based on the audio-visual
cues, the proximity attacker tries to mimic a subset of keyboard
interactions of U, termed as opportunistic keyboard-only attack. If
the visual access to U’s activities is blocked, for instance, through
the use of visual barrier around the terminal, the proximity attacker
can still launch the opportunistic keyboard-only attack based on
the audio cues alone. This is termed as audio-only opportunistic
keyboard-only attack. These opportunistic proximity attacks repre-
sent quite a strong model as the attacker can closely observe and
mimic the victim’s terminal interactions. This is otherwise hard to
do in real life due to the use of visual barriers, and the presence of
ambient audio noises, e.g., chatter sounds from surrounding peo-
ple, music, or keyboard sounds from non-targeted terminals, may
mask targeted keyboard sounds. Such an opportunistic strategy was
shown to be highly successful against ZEBRA [27], a local non-stop
authentication system. However, Hacksaw can effectively thwart
such opportunistic attackers (as demonstrated in Section 6.2.3).

3 SYSTEM ARCHITECTURE
3.1 Interactions in Hacksaw

We consider three different user-terminal interactions as follows.
Appendix A Figure 8 shows the acceleration generated on the user’s
wrist when he interacts with the desktop.

@ Typing: When a user types a character using a keyboard, the
browser, HTML Document Object Model (DOM) to be specific, dis-
patches two events — onkeydown and onkeyup. Typing interaction
is defined as the series of such onkeydown and onkeyup events.

© Scrolling: When a user rolls the wheel up or down to scroll a
web-page, HTML DOM fires a series of onwheel events. Scrolling
event is thus defined as a sequence of uninterrupted onwheel events.

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

Interactions

e -,
: (e.g., typing, scrolling) =5
—

Browser

;@Mf/ Q\m/!] L on a Computer

Input through
keyboard &mouse

Web-Server

Motion Features
sufficiently correlate with

i ?
Smartwatch/Bracelet Interactions ?

Motion Data m Motion Features

Continue

Companion Phone Log-out

(no implication to threat model, just a proxy to the watch)

Figure 1: A high-level architecture of Hacksaw.

Unlike the desktop setting, scrolling on a laptop can be performed
in various ways based on the laptop model and its configuration
(e..g, using slider at the right side of the touchpad, using TrackPoint,
or via a special (one or two) finger gesture). In our analysis, we
did not find much contribution of scrolling on the performance of
our Hacksaw system in the laptop setting. Therefore, for the laptop
setting, we do not consider scrolling interaction.

©® K2M and M2K: When a user switches from the keyboard to
the mouse (or the touchpad), the user makes a hand movement
(i.e., the hand used for mouse handling). This hand movement is
captured by the Keyboard-to-Mouse (K2M) interaction. Similarly,
the hand movement when the user switches from the mouse (or the
touchpad) to the keyboard is captured by the Mouse-to-Keyboard
(M2K) interaction. As K2M and M2K refer to two different hand-
movements that are mirrored to each other, we combine these
two events into one and refer them by K2M alone. To identify
an M2K interaction using only one watch, we divide the keys on
the keyboard into three regions - left region, middle region, and
right region (as shown in Appendix B Figure 9). We assume that
all users follow standard two-handed guidelines. We consider M2K
interaction only when the user uses a key on the right region of
the keyboard (i.e., the side closer to the mouse-handling hand)
following the mouse event.

3.2 Real-world Architecture of Hacksaw

Figure 1 shows a high-level architectural design of our Hacksaw
system. Hacksaw consists of following four main entities.

@ Website: This entity is simply a browser-based application
through which a user accesses his account associated with a remote
web-server. After the successful entry-point authentication of the
user, Hacksaw gets activated and triggers the user’s wrist-wearable
to transmit motion data to its companion phone. Since a website
(and web-server) cannot directly communicate with the user’s wrist-
wearable, it first contacts the phone, which in turn connects to the
wrist-wearable. The website of Hacksaw implements an Interaction
Generator (described later in Section 4) that outputs sequence of
interactions (e.g., typing, scrolling, and K2M) based on the raw
input events (e.g., keyboard and mouse-related events) observed on
the website. An interaction from Interaction Generator consists of
an interaction ID and the timestamps when the interaction starts
and ends. The generated sequence of interactions, interact info to
be specific, is then transmitted to the companion phone through
the web-server. We note that Interaction Generator is a JavaScript
module that runs solely at the client machine to generate sequence

16

Prakash Shrestha and Nitesh Saxena

of interactions which is transmitted to the phone for further pro-
cessing. The sequence of interactions does not reveal what exactly
the user has typed, rather it shows whether user has used the key-
board or mouse. Therefore, the transmission of interactions (not
the actual keys) neither leaks any sensitive information to network
attackers nor to online services.

© Remote Web-server: This entity is a remote server where a web-
service such as used for banking, credit-card, email, resides in this
entity. To continuously verify the legitimacy of the user, the web-
server of Hacksaw implements Decision Module, which is respon-
sible for making decisions on whether the current user is an au-
thorized user or not. The web-server correlates the interact info
from the website with the interaction inferred based on the wrist-
movement captured by the wrist-wearable. If these two do not
correlate sufficiently, the web-server makes the decision that its
current user and the wrist-wearable user are different, and takes
appropriate actions towards the current user. The web-server also
forwards interact info from the website to the user’s phone. Several
cloud messaging services, e.g., Firebase Cloud Messaging (FCM)
API [17], Apple Push Notification (APN) API [4], and Microsoft
Push Notification Service (WNS) API [28], can be utilized to estab-
lish a communication channel between a web-server and a phone.
Many security systems, such as Google 2SV [18] and Duo Push [10],
are already using such infrastructures.

® Phone-app: Hacksaw consists of an application for the user’s
phone that processes its functionality in the background. Based on
the interact info received from the web-server (originally from the
website), phone-app extracts several characteristic features from the
wrist-movements, i.e., motion sensors measurements, received from
the wrist-wearable and transmits them to the web-server. We note
that pre-processing the motion data in the phone and transmitting
the feature vectors (not the raw motion data) to the web-server
requires minimal communication bandwidth and helps preserve
potential leakage of user’s privacy through motion data.

@ Wear-app (WA): Hacksaw consists of an application for the
wrist-wearable that remains idle in the background and is activated
when its wearer is authenticated to a web-service. Once activated,
the wear-app starts transmitting motion readings to its companion
phone. The transmission of the motion data continues until the
current user logs out or gets deauthenticated from the service.

Support for Multiple Websites and Website Switching: Hack-
saw can be extended to support for the scenario where the user ac-
cesses multiple instances of websites, or the user switches from one
website to another. In a typical online scenario, each authenticated
user session generates a unique session ID (or sequence/session
number). This session ID can be tied to the Hacksaw session to
track the website that requests for the re-authentication, specifi-
cally motion data from the wrist-wearable through the web-server.
Given the fact that the user can interact with only one instance of
the website at a given time, re-authentication would be requested
from only one website that the user is currently using, and wrist-
wearable (and phone) would know which web-server to respond to
based on the source of the request and the session ID. Thus, a single
wrist-wearable (with its companion phone) can be used for multiple
instances of websites and in the website switching scenario.

Hacksaw: Biometric-Free Wearable Non-Stop Web Authentication

Authenticator
Data Generator i

E Motion
' Segment
! t

E Interval Seq.

Feature Extractor
Signal
Smoothing
Feature
Extraction

| Motion Data [~]__Motion Data

Motion
Data

Bracelet

-

[i Listener @ : —
User :] ! Actual ID Seq. Normalization
! | Interaction i Interact Info 1 !
| Generator E Typing Speed Features
[' Checker
“Authorized” OR | Decision Predicted Interaction
“Unauthorized” user Module ID Seq. Predictor

Figure 2: Prototype implementation of Hacksaw. ‘Interact’ indicates
‘interaction’ and ‘Seq’ indicates ‘sequence’.

Battery Consumption: Since Hacksaw requires continuous
streaming of motion data from the wrist-wearable to the compan-
ion smartphone, one may suspect that it may drain the battery
power of these devices. However, this is not the case because many
of the apps currently available on the app stores for the phones
(e.g., Google Fit, Pedometer, Step Counter, etc.) and corresponding
apps on their connected wrist-wearable stream their data back-
and-forth continuously without consuming much power via low
power Bluetooth [26, 32]. In our prototype, wrist-wearable contin-
uously transmits motion sensor data at the sampling rate of 200Hz,
which may seem power-draining. However, as per [1] (Table V),
such transmission at the sampling rate of 100Hz for 10 minutes
drains only 2.1% of battery power. We expect at the sampling rate of
200Hz, the power consumption would only be a bit higher (nearly
2.5%). Moreover, power consumption can be further optimized by:
(i) transmitting only feature vectors, instead of entire raw motion
data, from the wrist-wearable to the phone, and (ii) limiting data
transfer only to an active web-session.

4 DESIGN AND IMPLEMENTATION

As for the prototype design and implementation, and later for test-
ing of Hacksaw, we used a widely available smartwatch LG G Watch
R as a wrist-wearable, Samsung Galaxy S6 as the smartphone, a
desktop PC with an external keyboard and a mouse, and Lenovo
Thinkpad W530 laptop (with bottom-centered touchpad) as a termi-
nal. Our implementation consists of two units - (i) Data Generator
and (ii) Authenticator, as described below. Figure 2 provides the
visualization of our prototype implementation.

4.1 Data Generator

I. Website and Web-Server: We developed a simple website and a
web-server using HTML, JavaScript, CSS, and PHP. The website has
a simple login-form and a web-form. Once the user is authenticated
after providing correct username and password in the login-form,
the website sends “start” push message to the Android phone which
then triggers streaming the motion sensors measurements from
the watch to the phone. Hacksaw uses GCM to send push message
from the website to the designated phone. Then, the website leads
the user to a web-form containing several generic questions about
the user. The purpose of this web-form is to simulate the real-world
scenario where the user accesses his online account.

The website implements Input Event Listener and Interaction
Generator. Input Event Listener listens to all the input events (e.g.,
key presses and releases, mouse clicks, moves and scrolls, and other
keyboard-mouse related events) observed on the website and feeds
them to Interaction Generator. From the stream of input events,

17

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

Interaction Generator creates a series of interactions. Interaction
Generator considers three parameters when extracting interactions
from input events — minimum duration, maximum duration and idle
threshold. Minimum duration refers to the least duration that an
interaction should last for. We ignore all the interaction that last for
less than the minimum duration. If an interaction exceeds the max-
imum duration, we split it into two consecutive interactions. Both
of the two newly formed interactions should meet the minimum
duration constraint, otherwise, we do not split the interaction. Idle
threshold is the maximum allowable time difference between two
consecutive events in an interaction. If time difference exceeds the
idle threshold, two consecutive events are assigned to two different
interactions. The motive behind using idle threshold is to capture
only the interactions that involve the user’s continuous interaction
with the terminal and remove the user’s interactions other than
using the keyboard and the mouse/touchpad. When there is a pause,
and no event is observed on the terminal, it is not certain what the
user might be doing. For that reason, we cannot correlate the user’s
activities with his wrist movement during the pause. Given this,
we split the series of events into two interactions separated by the
pause when the pause duration is higher than the idle threshold.
From a given series of input events, Interaction Generator out-
puts a sequence of interactions based on the aforementioned con-
straints. This sequence of interactions takes the form of
(idy, ts1, ter), (idy, tsz, tez), - (1)
where (id, ts, te) represents an interaction of type id (one of the
three interactions - typing, scrolling or K2M) that starts at time
and ends at time t,. We term it as “interact info”. The time duration
from ts to t. constitutes the interaction interval for the interaction
‘id’. All this sequence of interactions is uploaded to the web-server
for the purpose of offline analysis in our current implementation.

II. Phone and Watch Apps: We built two Android apps, one for
the phone and another for the watch, that stay idle in the back-
ground. A “start” GCM signal activates the phone app, which in
turn activates the watch app over the Bluetooth channel. Similarly,
a “stop” GCM signal stops both apps. Once activated, the watch
app starts streaming accelerometer and gyroscope sensors readings
to the phone at 200Hz, which is the standard sampling rate of the
current generation of wearable devices. The accelerometer data
from the watch is transmitted and stored in the form of

(tir Xis Yis 2i)s (tit1s Xit2> Yiv2s Zit1)s --- ©)]

where (¢;, x;, yi, zi) represents one accelerometer data sample cap-
tured at time #; and x;, y;, z; are instantaneous acceleration along
x-, y- and z-axes, respectively. The gyroscope data also takes the
similar form. In our current implementation, these sensors readings
are stored locally in the phone for further analysis.

4.2 Authenticator

As shown in Figure 2, Authenticator consists of four main com-
ponents — Segmenter, Feature Extractor, Interaction Predictor, and
Decision Module. We implemented all these components in Matlab.
In the real-world implementation, the phone would implement Seg-
menter and Feature Extractor, and the web-server would implement
Interaction Predictor and Decision Module.

I. Segmenter: This component takes two inputs - (i) the accelerom-
eter and gyroscope readings from the watch, and (ii) the sequence

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

of interaction intervals from Interaction Generator. For an interac-
tion interval (ts, .), Segmenter selects all the accelerometer and
gyroscope data samples with time ¢ : t; < t < t, and forms a block.
Thus, Segmenter creates a series of blocks for a given sequence of
interaction intervals and are sent to Feature Extractor. Motion data
samples that are outside the interaction intervals are discarded.

II. Feature Extractor: This component receives a series of blocks
of motion data from Segmenter and computes 150 statistical features
over each block of motion data (details are provided in Appendix
C). Each of the extracted features is re-scaled in the range of (0,
1) using standard min-max normalization. Feature Extractor thus
forms a feature vector F = (fi, f2, ..., f149, fi50), and sends the
sequence of feature vectors Fj, Fi11, Fi+2, ..., each corresponding
to one interaction block, to Interaction Predictor.

IIL. Interaction Predictor: Based on the sequence of feature vec-
tors received from Feature Extractor, Interaction Predictor infers
corresponding interactions, resulting in a predicted interaction ID
sequence. Interaction Predictor provides its prediction based on
the similarity of interaction’s feature vector with stored generic
templates of interactions. Below we describe how interaction tem-
plates are generated and provide details on the working algorithm
of Interaction Predictor.

@ Interaction Template Generation: An interaction template
of a user consists of three types of signatures, each corresponding
to one of the three interactions, i.e., typing, scrolling, and K2M.
A signature of an interaction is a set of characteristic features (or
feature vector) corresponding to that interaction that we computed
as follow. Feature vectors corresponding to each of the interactions
are grouped together, and centroid (here, we use average) of each
feature in feature vectors is computed. The resultant centroids of
features for each interaction form the signature of that interaction.
Since we consider only typing and K2M interaction for the laptop
setting, an interaction template for the laptop contains only two
types of signature corresponding to these two interactions. Inter-
action Predictor employs n interaction templates created from a
random group of n users to predict a motion data block. It does
not require user intrinsic signature for interaction, instead, it uses
generic interaction signatures from a random group of users for
prediction. In a real-world implementation, a web service can use
(or hire) a small representative set of random users to build such
interaction templates, or re-use the templates built by other services
with a similar pool of users.

@ Working Algorithm of Predictor: Based on the feature vector
received from Feature Extractor, Interaction Predictor outputs an
interaction ID. Predictor does so based on the majority voting from
pre-built templates (as described earlier) consisting of interaction
templates from ‘n’ users. For each user template, Predictor computes
the cosine similarity of the supplied feature vector to each of the
three interaction signatures of the template. Since the interaction
similarity in Hacksaw relies on the features’ orientation rather than
its magnitude (given normalized feature vectors), cosine similarity
is a good choice in such a scenario to compute a similarity measure.
Predictor outputs interaction i : i € {typing, scrolling, K2M} for
a given feature vector if its similarity score with the signature of
interaction i of the template is higher than that with the rest of
the interaction signatures. If a feature vector corresponds to an

18

Prakash Shrestha and Nitesh Saxena

interaction other than typing, K2M, and scrolling, then its similar-
ity score to each of the stored templates would be extremely low.
Therefore, we employ interaction similarity threshold (Ointeract) to
identify such ‘other’ interactions. If the similarity score is below
Ointeract, predictor outputs other. ‘n’ templates thus generate n dif-
ferent predictions for a supplied feature vector, and final prediction
is computed based on the majority voting on the predictions.

IV. Decision Module: Decision Module receives the sequence of
actual interactions, specifically the actual interaction ID sequence,
from the Interaction Generator and the sequence of interactions
inferred by the Interaction Predictor based on the user’s wrist
movement, i.e., predicted interaction ID sequence. Decision Module
correlates these two sequences, and outputs ‘1’ if the two sequences
match, otherwise, outputs ‘0. When correlating two sequences,
Decision Module compares ‘w’ interactions at a time. We term it
as window size. As a measure of how well two sequences match,
Decision Module computes a similarity score syin (0 < Syin < 1)
for each window as follow

no. of matching interactions

Swin = 3
win window size (w) ®)

where ‘no. of matching interactions’ represents the number of
predicted interaction ID that matches with the actual interaction ID
in a window. To make a final verdict for a window, Decision Module
checks the similarity score s, against similarity threshold (1 in).
If syvin is greater than 0,y;,, decision module concludes the current
terminal user and the wrist-wearable user are the same for that
window. Otherwise, it concludes that the two users are different.

Decision Module may incorrectly output ‘0’ for a legitimate
window. In such a case, if Hacksaw immediately deauthenticates
the user, it would hamper user experience. To minimize such false
negatives, Decision Module allows ‘b’ consecutive windows with
the score of ‘0’ before it deauthenticates the user. We term it as a
bonus window. If b is set to 2, Decision Module deauthenticates the
user when it receives two consecutive windows with the score of 0.
If Decision Module receives a window with the score of 1, it resets
the counter of the incorrect window to 0.

Decision Module also incorporates Typing Speed Checker that
constantly monitors the typing speed of the user. The reason be-
hind employing Typing Speed Checker is to thwart opportunistic
attackers. In our analysis, we observed that the typing speed of
an opportunistic attacker is extremely lower than that of a reg-
ular user, potentially because he has to correctly mimic a subset
of victim user’s activities in real time. Given this, we implement
Typing Speed Checker in our Decision Module. For every n seconds,
Decision Module checks the typing speed of the user. If it finds
that the typing speed of the user is below typing threshold (v), it
raises a flag indicating the potential for an opportunistic attack.
Similar to bonus window, Decision Module uses a bonus flag ‘f” for
typing speed. Bonus flag of f indicates that the Decision Module
allows ‘f” flags before it deauthenticates the user. We note that if
no activity is observed on the account (i.e., for the typing speed
of 0), the Decision Module does not deauthenticate the user. The
user is deauthenticated only when the Decision Module observes
some events on the account and the typing speed of the user is
lower than the set threshold. We note that Typing Speed Checker
is an independent generic component incorporated in Hacksaw
to thwart the opportunistic attacks. It may or may not be added

Hacksaw: Biometric-Free Wearable Non-Stop Web Authentication

depending on whether proximity attacks of [19] are considered as
a practical threat.

Thus, Decision Module uses window size (w), its similarity
threshold (6,yin), bonus window (b), typing threshold (v), and bonus
flag (f) when deciding the legitimacy for a user.

5 DATA COLLECTION

For our data collection, we recruited 25 participants (age: 20-35
years; 19 males, 6 females). Participants in our study were mostly
graduate students at our university. Our pool of users consists
of both dexterous typists and less-experienced ones. All of them
were right-handed except one participant who was able to use both
hands equally, i.e., ambidextrous. All participants own a laptop
and majority of their laptops had touchpad at the bottom-center
location, and few had it on the right side of the keyboard. Some
of the participants use an external mouse when they use their
laptops while other use a built-in touchpad. Similar number of
participants and demographics are well-established in lab-based
studies in biometrics research [8, 19, 27, 36, 45].

Prior to the experiment, participants were told that the purpose
of our study was to collect information on how they use their wrist
when interacting with a desktop or a laptop. We intentionally did
not disclose the actual nature of the study because it may impact the
user’s natural behavior towards the system. They were informed
that the wrist-motion (i.e., accelerometer and gyroscope) data, and
all inputs through the keyboard and the mouse (or touchpad) events
will be recorded. All these participants serve as users of the system.
One member of the researcher team played the role of a strategic
proximity attacker to evaluate Hacksaw against proximity attacks.
The attacker was well-trained and representative of an expert in
mimicking the victim’s terminal activities based on audio or audio-
visual cues. The experiment and data collection was approved by
the IRB at our institutions. At the end of the study, we explained
the actual purpose of the experiment.

Experiments were conducted in a quiet environment that pro-
vides a strong advantage to an audio-based proximity adversary.
During the experiment session, each participant performed two
10-minute tasks of filling a web-form. In one task, a terminal with
an external keyboard and a mouse was used that represents the
desktop setting of Hacksaw, while in the other task, a laptop with
built-in keyboard and touchpad was used to simulate the laptop
setting. The form-filling task involves all types of interactions that
occur during a web-surfing session. Although the frequency of
different interactions varies based on the types of websites (e.g.,
email vs. online shopping site), as long as the interactions observed
on the terminal match with the predicted interactions based on the
wrist-activities, Hacksaw would work well.

During these tasks, the proximity attacker executed each of
the two strategic attacks. In the desktop scenario, the adversary
performed audio-only opportunistic attacks. In this scenario, the
attacker and the user were positioned approximately 1 meter apart
facing in opposite direction so that the adversary cannot see the
victim but can hear the user interacting with the terminal. Based on
the audio cues received when the user interacts with the desktop,
the adversary attempts to mimic the victim’s activities to fill out the
similar form at his end but using only the keyboard. In the laptop
scenario, the adversary was allowed to position himself in a way

19

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

such that he has a clear visual access of the victim. Similar to the
desktop setup, the adversary tries to mimic the victim’s keyboard
activities to fill out the form at his end based on both audio and
visual cues. Thus, in the desktop scenario, the assigned adversary
executed an audio-based keyboard-only opportunistic attack, and
audio-video based keyboard-only opportunistic attack was executed
in the laptop scenario. Thus, the 25 user sessions resulted in a total
of 50 data samples, with each sample consisting of three traces:
motion data from the user’s watch, input events (keyboard-mouse
related events information) recorded on the victim terminal, and
input events recorded on the attacker terminal. All traces within a
sample were synchronized. We note that the differences in hardware
devices do not have any impact on the adversary’s ability to mimic
the victim’s terminal activities because opportunistic attacks are
executed using only the keyboard. Further, these two attacks were
performed according to their description found in [19].

We also collected motion data samples for each of the following
regular activities — walking, writing, using-phone, using-terminal,
and miscellaneous (detailed earlier in Section 2.2) from randomly
selected two participants. The purpose of this data collection is to
evaluate Hacksaw against a remote attack when the victim may
be performing different activities while the attacker tries to access
the victim’s online account. We asked two of the participants to
walk in their regular walking style. Similarly, we asked another
two participants to use their mobile phones in their usual style. We
did not restrict them from performing any activities on the phone.
They were allowed to do any regular tasks on their phones such
as surfing the Internet, reading/writing text/email, making notes,
setting the alarm, etc. To two of the participants, we provided a wiki
link on a random topic and asked them to write its content on a
sheet of paper. We also collected motion data when the user and one
of the researchers were having a normal conversion on a random
topic. We collected motion data in such a scenario from four user
sessions. In the first two sessions, the users were sitting on a chair
while in another two sessions, the users were standing. During
these four user sessions, users were moving their hands in their
habitual pattern. The users performed each of these activities for 5
minutes. While performing these activities, we asked the users to
wear the watch to collect the motion sensor readings corresponding
to these activities. Thus, we collected two data samples for each
of the following regular activities — walking, writing, using-phone,
using-terminal, and four data samples for miscellaneous activity.

6 EVALUATION AND RESULTS
6.1 Optimal Value Selection

To find an optimal value for different parameters of Hacksaw, we
employ False Negative Rate (FNR), False Positive Rate (FPR) and True
Negative Rate (TNR). FNR is the rate of incorrectly predicting posi-
tive instances as negative, FPR is the rate of incorrectly predicting
negative instances as positive, and TNR is the rate of correctly
identifying negative instances. We also compute Equal Error Rate
(EER), an equilibrium point of FNR and FPR. We note that these
metrics are not the real metrics for evaluating the performance
or security of our approach, rather, they help to choose optimal
values for the parameters. The actual metrics to evaluate the per-
formance of Hacksaw are described later in this section. In all our

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

analysis, we employ leave-one-user-out cross-validation approach.
In particular, for a given user, we build interaction predictor using
samples from all other users. It indicates that the system does not
require any user-specific prediction model, thereby making the
model user-agnostic.

6.1.1 Interaction Similarity Threshold Ointeract)- To find an op-
timal value for 0;nteract, we compute FNR and FPR for different
values of similarity score. For Interaction Predictor, FNR indicates
the fraction of input interactions (i.e., typing, scrolling, and K2M)
that has been incorrectly predicted as different interactions. Simi-
larly, FPR of Interaction Predictor indicates the fraction of ‘other’
interactions that has been incorrectly predicted as one of the in-
put interactions. To compute FNR, we paired each of the input
interaction samples from the users when they were filling out the
web-form with one of the motion data samples captured when the
users were performing other activities. This cross-pairing process
simulates the scenario where an attacker attempts to access the
victim’s online account when the victim is doing ‘other’ activities.
As expected, we found that the performance of Interaction Pre-
dictor in the desktop setting is relatively better compared to that
in the case of the laptop, i.e., the lower EER value at the higher
similarity score (FPR and FNR plots for Interaction Predictor is
shown in Appendix Figure 10). This is because the wrist-movement
when the user uses a laptop is relatively subtle compared to the
wrist-movement when the user uses a desktop. Since we do not
want to log out any legitimate user when he is using a terminal,
we want to have minimum FNR for interaction prediction. There-
fore, we choose the similarity score where we achieve minimum
FNR with reasonable FPR. We chose 0.90 as an optimal value for
Ointeract for the desktop setting, where FNR and FPR are 0.06 and
0.11, respectively. Similarly, for the laptop setting, we chose 0.85 as
an optimal value for ;nterqcr, where FNR and FPR are both 0.12.

6.1.2 Window Size (w) and Similarity Threshold (0,yin). To find an
optimal value for w and 6,,;,, we employ FNR and TNR. For Deci-
sion Module, FNR is the fraction of all windows from an authorized
user that is predicted as from the unauthorized user. Similarly, TNR
is the fraction of all windows from an unauthorized user that is
correctly detected as from unauthorized users. To compute FNR
and TNR, we follow the similar approach as earlier.

To find an optimal value for w and 60y, we use the optimal
value of inreracr that we chose earlier, i.e., 0.90 for the desktop
and 0.85 for the laptop settings. With this parameter setting, we
evaluate the performance of Decision Module for different window
sizes of (5-30) and different window similarity thresholds of 50-75%.
Figure 3 shows the average FNR for various window sizes and win-
dow similarity thresholds for the desktop and the laptop setting. As
can be seen from the figure, the average FNR decreases on increas-
ing the window size and decreasing the similarity threshold. This
indicates that more the interactions provided on a window and the
lower the similarity threshold, better the Hacksaw system performs.
However, at the same time, it would take a longer time to detect
the adversary and the overall attack detection accuracy become
lower. Therefore, it is necessary to choose an optimal window size
and window similarity threshold so that Decision Module performs
well in benign and adversarial settings.

20

Prakash Shrestha and Nitesh Saxena

As shown in Figure 3a, we achieved average FNR of less than 0.04
for the window sizes above 10 and nearly 0 for window similarity
threshold of less than 65% for the desktop setting. For the laptop
setting, we achieved a relatively higher average FNR, as shown
in Figure 3b. The higher average FNR in the laptop setup versus
the desktop setting is expected because the wrist-movement corre-
sponding to different interactions when using the laptop is more
subtle compared to the interactions when using the desktop. As
can be seen from the Figure 3b, Hacksaw performs better in terms
of correctly detecting authorized users for window sizes greater
than 14 and similarity thresholds of less than 65%.

Similarly, Figure 4 shows the average TNR for various window
sizes and window similarity thresholds for the desktop setting. We
achieved similar results with the laptop settings. Hacksaw performs
well in detecting adversaries as indicated by high TNR of > 0.92.

With these results, we chose window size (w) of 18 and window
similarity threshold (6,,in) of 60% as optimal values, where FNR
and TNR are 0.00 and 0.96, resp., in the desktop setting, and in the
laptop setting, they are 0.01 and 0.96, resp.

6.1.3 Other Parameters. To find optimal values for the parameters
other than those mentioned above, we employ the approach de-
scribed in Appendix E. All the parameters and their values used in
Hacksaw are presented in Table 2.

Optimal Values for Other Desktops and Laptops: Since all
standard keyboards and mice in a desktop follow more or less
similar configuration, we believe that the generated interaction
templates and the chosen optimal values may work for all desktop
scenarios. These interaction templates and optimal values would
also work for all laptops with bottom-centered touchpad (the most
common setting in laptop). In the case of the laptop with a different
touchpad placement, it may require to build different interaction
templates and tune the values of Hacksaw’s parameters accordingly
for its best performance. This is because the wrist gesture with such
a different configuration would be different. However, since the
interaction template generation and tuning of the parameters can
be done offline, it can be performed easily, for example, by hiring a
random group of users, once for each touchpad configuration.

6.2 Performance with Selected Parameters

Using the chosen optimal values for the parameters (as listed in
Table 2), we evaluate the performance of Hacksaw in both benign
and adversarial settings. Specifically, we use user log out time (UT) as
a metric to evaluate how often Hacksaw will log out an authorized
user, and attacker log out time (AT) as a metric to evaluate how
quickly Hacksaw detects an unauthorized user. A large value of UT
is desirable because it allows the authorized user to remain logged in
for an extended period of time without getting accidentally logged
out, and hence improves the usability. On the other hand, it is better
to have a smaller value of AT because it quickly locks the adversary
giving only a shorter window for an adversary. We measure both
UT and AT in terms of the number of windows. Each window in
Hacksaw consists of 18 interactions (i.e., the window size), each
of 500 ms long (and max of 3500 ms for K2M). A window mostly
contains typing interactions with one K2M and few scrolling events.
This makes a window of length approximately 10 - 15 seconds.

Hacksaw: Biometric-Free Wearable Non-Stop Web Authentication

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

1.00
0.20 0.20
©Optimal w = 18 (FNR = 0.00) ——50% e 50%
0.98
—-55% --+--55%
0.16 0.16
—x--60% o
sy & 0.96
0 o
Zo12 —70%)| Z o012 5
P ao 0.94
oo I
£0.08 g —0%
g Zom o
< e 60%
0.04 0.90 -+-65%
© Optimal w = 18 (TNR = 0.96) —70%
0.00 0.88
2 6 0 14 18 22 26 30 2 6 100 14 18 22 26 30

Window Size (w)

(a) Desktop

Window Size (w)
(b) Laptop

Figure 3: Average FNR vs. window size (w) for different similarity threshold (6,,;,) values.

Fraction of windows that are incorrectrly classified as mismatching,.

[

1

o
3

0.8

o
o

0.6

o
~

0.4

o
[N)

0.2

Fraction of logged out users
Fraction of logged out users

n
0 5 10 15 20 25 30 35 40 45 50
UT in terms of Window (w)

(b) Laptop (when 0;nteract = 0.85)

o

0
0 5 10 15 20 25 30 35 40 45 50

UT in terms of Window (w)

(a) Desktop (When 6;,1erqcr = 0.90).

Figure 5: Fraction of logged out users in a given authentication win-
dow (with w = 18, 0,,;, = 60%). ‘UT’: ‘user log out time’.

6.2.1 Performance with Authorized Users. Figure 5 shows the per-
formance of Hacksaw with authorized users in the desktop and
laptop settings. As observed from the Figure 5a, all the users were
correctly identified as authorized users and were able to remain
logged in for the entire duration of the experiment when they were
using the desktop. When using the laptop, 88% (i.e., 22/25) of the
users were able to remain logged in for the entire duration of the
experiment when b = 1 (as shown in Figure 5b). When b = 2, 96%
(i.e., 24/25) of the users were identified as authorized users, and
only one user was logged out after the 12th authentication window.
This was potentially because the logged out user’s typing style was
different from the standard two-handed typing style. These results
show that our Hacksaw system can effectively identify a benign
user in both the desktop and the laptop settings.

6.2.2 Resistance against Remote Attackers. Figure 6 shows the per-
formance of Hacksaw against remote attackers when they use the
desktop to launch the attack in various scenarios (as described
earlier in Section 2.2). As the figure shows, the remote attackers
were quickly detected and logged out within a few authentica-
tion windows. For the scenario with walking, using-phone, writing,
and miscellaneous activities, all the attackers were deauthenticated
within the first and second authentication window (i.e.,<25 sec-
onds) when b was set to 1 and 2, respectively. In the using-terminal
scenario, Hacksaw took relatively longer time to log out all the
remote attackers compared to other scenarios. This is perhaps be-
cause wrist activities of the victim accidently match with those of
the attacker as they both were performing the using-terminal activ-
ity. Fortunately, more than 90% of remote attackers were logged out
within 7th authentication window (i.e., <85 seconds) when b = 2,
and when b = 1, all attackers were logged out. We achieved similar
results when the remote attacker uses the laptop. We note that the
attack here is a remote and non-targeted, so it would be hard for the

21

Window Size (w)

Figure 4: Desktop. Average TNR vs. window
size (w) for different similarity threshold
(0+yin) values. Fraction of windows that are cor-
rectly classified as ‘other’ activities. Similar re-
sults were achieved with laptop.

-

1

>4
3

08

0.6

o
@

0.4

o
kS

0.2

o
o

[—b=1]

——b=2

Fraction of logged out adversaries

Fraction of logged out adversaries

0

o

0 5 10 15 20 25 30 35 40 45 50 0
AT in terms of Window (w)

5 10 15 20 25 30 35 40 45 50
AT in terms of Window (w)

(a) Walking, Using Phone, Writing,

and Miscellaneous

(b) Using Terminal

Figure 6: Desktop. Fraction of remote attackers logged out for a
given authentication window when the victim user performs var-
ious activities. ‘AT’: ‘attacker log out time’. Similar results were
achieved with laptop.

0.8

0.6

0.4

0.2

Fraction of logged out adversaries
Fraction of logged out adversaries

0
0 5 10 15 20 25 30 35 40 45 50 0
AT in terms of Window (w)

(a) Desktop. Audio-only attack.

5 10 15 20 25 30 35 40 45 50
AT in terms of Window (w)

(b) Laptop. Audio-video attack.

Figure 7: Performance of opportunistic proximity attackers.
remote attacker to launch the attack at the time when the victim
performs a using-terminal activity.

6.2.3 Resistance against Proximity Attackers. The performance of
Hacksaw against strategic proximity attackers in the desktop and
the laptop settings is presented in Figure 7. As can be read from the
figure, Hacksaw can effectively identify such proximity attackers. In
both the desktop and laptop settings, more than 90% of the attackers
were kicked out in less than 10 authentication window for both
b = 1and b = 2. In the desktop setting, only one attacker (4%) was
able to remain logged in for the entire duration of the experiment.
We recall that such a opportunistic proximity attack represents
quite a strong model where the attacker can closely observe and
mimic the victim’s terminal interactions, which is hard to execute
in real life. In the laptop setting, all attackers were kicked out after
10 authentication windows.

6.2.4 Summary of Results. Our results show that Hacksaw can
effectively identify the authorized user in both the desktop (with 0%

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

of lock out) and the laptop (with less than 5% of lock out) settings.
When an authorized user is occasionally logged out, the user can be
allowed to retry logging in with the entry-point authentication, and
Hacksaw would continue to re-authenticate the user. Hacksaw can
also effectively detect the remote adversary (within 15-20 seconds,
in most of the cases) in both desktop and laptop settings in all the
scenarios. For security sensitive online transactions with Hacksaw
(e.g., a huge online purchase, or banking transaction), the web
interface can be designed in such a way that forces the user to
interact with the website for a sufficiently long period of time,
and if the interaction while performing an activity on the website
is too short (<20 seconds), the activity can be blocked. This will
enable Hacksaw to even defeat advanced attackers who try to
perform the activity very quickly. In sum, Hacksaw works well in
both the benign and adversarial scenarios in both the desktop and
laptop setting. We note that the handedness of the users will not
affect the performance of Hacksaw as long as the wrist-wearable
is worn on mouse-holding hand. However, the physical ailments
that involves wrist movements, such as tremor due to multiple
sclerosis, may affect its performance. Fortunately, we can still tune
the parameters to support such situations. Accessibility has always
been a challenge in many authentication systems, especially in
behavioral biometrics.

7 RELATED WORK

In an attempt to mitigate account takeover threats, fraudulent login
detection mechanisms have been proposed in [13, 40]. However,
these schemes are based on the network and system information,
e.g., IP, geo-location, and browser configuration, which can be easily
impersonated by the attacker. Further, these schemes are inherently
still entry-point mechanisms and therefore can not protect against
account takeover through session hijacking. Behavioral biometrics
techniques such as keystroke dynamics [5, 42] and mouse dynam-
ics [14, 29, 33] have been suggested for continuous authentication
in the online scenario. However, they are vulnerable to theft, inter-
nal observation attacks [43] and synthetic attacks [35], in addition
require storing users’ privacy-sensitive biometrics templates online.

Work related to ours is ZEBRA [27], a zero-effort bilateral deau-
thentication method. ZEBRA is intended for scenarios where users
authenticate to a common local computer terminal (such as a desk-
top computer in a shared setting). Similar to Hacksaw, ZEBRA
requires the user to wear a bracelet equipped with motion sensors
on his mouse-holding hand. The bracelet is wirelessly connected
and pre-paired to the terminal, which compares the sequence of
events it observes (e.g., keyboard/mouse interactions) with the se-
quence of events inferred using measurements from the bracelet’s
motion sensors. The logged-in user is deauthenticated when the
two sequences do not match.

Hacksaw is different from ZEBRA in several important aspects.
First, ZEBRA is intended for user authentication to a local machine,
while Hacksaw is designed for web authentication. Being a local
authentication system, the threat model of ZEBRA considers only
a naive proximity attack while Hacksaw threat model considers
the proximity attack as well as strong remote attacks. Specifically,
Hacksaw considers a account takeover threat that covers various
devastating real-world attacks including session hijacking and man-
in-the-middle attacks. Second, Hacksaw is carefully designed to

22

Prakash Shrestha and Nitesh Saxena

work well with the laptop setting (Section 6) while ZEBRA is de-
signed and evaluated for only the desktop scenario. Third, Hacksaw
uses off-the-shelf smartwatches that have a motion sensor data sam-
pling frequency of 200Hz while ZEBRA employs the high-end Shim-
mer Research bracelet [37] with a sampling frequency of 500Hz.
Although Hacksaw uses lower sampling frequency, it still performs
better in both the benign and adversarial settings. Hacksaw cor-
rectly identified 100% authorized users (Figure 5a), while ZEBRA
only identified 85% users correctly (Figure 8 in [27]) when b (or g)
= 1. ZEBRA is vulnerable to proximity attacks (success rate>40%)
[19], while Hacksaw can effectively (>90%) identify such attacks
(Figure 7). Fourth, unlike ZEBRA, interaction matching algorithm of
Hacksaw considers the “other” interaction representing activities
other than input interactions (i.e., typing, scrolling, and K2M) that
enables Hacksaw to effectively detect if the original user is indeed
using the system or performing other activities.

8 CONCLUSION AND FUTURE WORK

We presented Hacksaw, a transparent and privacy-preserving non-
stop web authentication system based on a wrist-worn wearable
that can effectively detect and prevent the account takeover attacks.
Once the user logs into a Hacksaw implemented online account,
Hacksaw continually re-authenticates the user by comparing the
events observed on the website with the wrist-movements of the
user captured by the wrist-wearable. Our results indicate that Hack-
saw works well at detecting the user and the remote and proximity
attackers attempting to take over the user’s online account by com-
promising initial login credentials or hijacking of the login session.
Since Hacksaw does not require storing any sensitive information
about the user (unlike traditional biometric schemes), it preserves
the privacy of the user against template-hijacking attacks. Given
that wrist-wearables are already gaining momentum in the user
space and have already been used in security applications, Hacksaw
can be incorporated to the current web authentication model with-
out imposing any extra effort from the users throughout the login
session. Hacksaw can be integrated with any initial login method,
including passwords or two-factor authentication protocols, all of
which are highly susceptible to account takeovers in the absence
of non-stop authentication.

Since different orientations of the laptop (e.g., on the user’s lap,
while seated on a sofa) may generate different interaction ges-
tures, it may impact the performance of Hacksaw. Future research
is needed to explore the impact of such orientations on the per-
formance of Hacksaw. Hacksaw may be extended to support the
non-stop authentication on the personal devices other than the
desktop and the laptop, e.g., mobile phones and tablets, by tweak-
ing its algorithmic design. Since interaction and interaction gestures
when using a mobile phone (or a tablet) are different from those
when using a desktop (or a laptop), rigorous future research would
be needed to explore more in this direction. Our current imple-
mentation is merely a prototype of the system, and is evaluated
with just 25 graduate students. Much more work is needed to take
it to the production level, such as building an end-to-end system,
studying the feasibility of re-using the interaction templates, and
evaluating the system performance with much larger and diverse
pool of users.

Hacksaw: Biometric-Free Wearable Non-Stop Web Authentication

ACKNOWLEDGMENT

The authors would like to thank our shepherd Dr. Adwait Nad-
karni and anonymous reviewers for their feedback on the paper.
We would also like to thank Dr. Tzipora Halevi for her valuable
suggestions on a previous draft of the paper. This work is partially
supported by National Science Foundation (NSF) under the grants:
CNS-1547350, CNS-1526524 and CNS-1714807.

REFERENCES

[1] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Kemal Akkaya. 2018. WACA:
Wearable-Assisted Continuous Authentication. arXiv preprint arXiv:1802.10417.

[2] Agari. 2018. Account Takeover-Based Email Attacks Increased by 126% in 2018.
https://goo.gl/8C59yP.

[3] FIDO Alliance. 2017. Universal 2nd Factor (U2F) Overview. https://bit.ly/
2VbXVGy.

[4] Apple Inc. 2018. APNs Overview. https://goo.gl/k37dLV. Accessed: February 1,
2018.

[5] Salil P Banerjee and Damon L Woodard. 2012. Biometric authentication and
identification using keystroke dynamics: A survey. Journal of Pattern Recognition
Research 7,1 (2012), 116-139.

[6] Thanh Bui, Siddharth Prakash Rao, Markku Antikainen, Viswanathan Manihatty
Bojan, and Tuomas Aura. 2018. Man-in-the-machine: exploiting ill-secured
communication inside the computer. In USENIX Security Symposium. 1511-1525.

[7] Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta.

2017. Surviving the Web: A Journey into Web Session Security. ACM Computing

Surveys (CSUR) 50, 1, 13.

Mauro Conti, Irina Zachia-Zlatea, and Bruno Crispo. 2011. Mind how you answer

me!: transparently authenticating the user of a smartphone when answering

or placing a call. In Symposium on Information, Computer and Communications

Security. ACM, 249-259.

Alexandra Dmitrienko, Christopher Liebchen, Christian Rossow, and Ahmad-

Reza Sadeghi. 2014. On the (in) security of mobile two-factor authentication. In

International Conference on Financial Cryptography and Data Security. Springer.

Duo Security Inc. 2018. Duo Mobile: Duo Security. https://duo.com/solutions/

features/user-experience/easy-authentication.

Forbes. 2016. Hackers Are Hijacking Phone Numbers And Breaking Into Email,

Bank Accounts: How To Protect Yourself. https://goo.gl/dyV1bR.

Fox News. 2018. Hackers are going after your online bank account, report says.

https://goo.gl/A9TbRd.

David Freeman, Sakshi Jain, Markus Diirmuth, Battista Biggio, and Giorgio Giac-

into. 2016. Who Are You? A Statistical Approach to Measuring User Authenticity..

In NDSS. 1-15.

Lex Fridman, Ariel Stolerman, Sayandeep Acharya, Patrick Brennan, Patrick

Juola, Rachel Greenstadt, and Moshe Kam. 2015. Multi-modal decision fusion for

continuous authentication. Computers & Electrical Engineering 41 (2015).

Gadget 360. 2014. Hacked Email Accounts Spread Spam Faster: Study. https:

//g00.gl/UnNd6U.

Gadget 360. 2014. Home Depot Says About 53 Million Email Addresses Stolen in

Breach. https://goo.gl/DDh7Hi.

Google Inc. 2018. Firebase Cloud Messaging | Firebase. https://firebase.google.

com/docs/cloud-messaging/. Accessed: February 1, 2018.

Google Inc. 2018. Google 2-Step Verification. https://www.google.com/landing/

2step/.

O Huhta, P Shrestha, S Udar, M Juuti, N Saxena, and N Asokan. 2016. Pitfalls

in Designing Zero-Effort Deauthentication: Opportunistic Human Observation

Attacks. In Network and Distributed System Security Symposium (NDSS).

Matthew Humphris. 2018. Hacker Proves Bypassing Two-Factor Authentication

is Easy. https://goo.gl/MbCj3W. Accessed on July 23, 2018.

Fitbit Inc. 2018. Fitbit Official Site for Activity Trackers. https://www.fitbit.com/.

Accessed: November 16, 2018.

Vineeta Jain, Divya Rishi Sahu, and Deepak Singh Tomar. 2015. Session Hijack-

ing: Threat Analysis and Countermeasures. In Int. Conf. on Futuristic Trends in

Computational Analysis and Knowledge Management.

Nikolaos Karapanos, Claudio Marforio, Claudio Soriente, and Srdjan Capkun.

2015. Sound-Proof: Usable Two-Factor Authentication Based on Ambient Sound..

In USENIX Security. 483-498.

Radhesh Krishnan Konoth, Victor van der Veen, and Herbert Bos. 2016. How

anywhere computing just killed your phone-based two-factor authentication. In

Conference on Financial Cryptography and Data Security. Springer.

LG Electronics. 2018. LG G Watch R. http://www.lg.com/us/smart-watches/lg-

W110-1g-watch-r. Accessed: November 16, 2018.

Xing Liu, Tianyu Chen, Feng Qian, Zhixiu Guo, Felix Xiaozhu Lin, Xiaofeng

Wang, and Kai Chen. 2017. Characterizing smartwatch usage in the wild. In

International Conference on Mobile Systems, Applications, and Services. ACM.

8

=

[9

=

[10]
(1]
[12]

[13]

[14]

[15]

[16

[17]

[18

[19]

[20

[21

[22]

[25]

[26

23

WiSec 20, July 8-10, 2020, Linz (Virtual Event), Austria

&
=)

Shrirang Mare, Andrés Molina Markham, Cory Cornelius, Ronald Peterson, and
David Kotz. 2014. Zebra: Zero-effort bilateral recurring authentication. In Sym-
posium on Security and Privacy (SP. IEEE.

Microsoft Inc. 2018. Windows Push Notification Services (WNS) Overview.
https://goo.gl/sTmGPK. Accessed: July 26, 2018.

Soumik Mondal and Patrick Bours. 2016. Combining keystroke and mouse dy-
namics for continuous user authentication and identification. In Identity, Security
and Behavior Analysis (ISBA). IEEE, 1-8.

[30] NBC News. 2018. Hundreds of Millions of Email Accounts Hacked and Traded
Online, Says Expert. https://goo.gl/su6uS9.

NDTV. 2014. Colombian President’s email account hacked: report. https://goo.
gl/3isSUu.

Emirhan Poyraz and Gokhan Memik. 2016. Analyzing power consumption
and characterizing user activities on smartwatches: summary. In International
Symposium on Workload Characterization (IISWC), 2016. IEEE.

Maja Pusara and Carla E Brodley. 2004. User re-authentication via mouse move-
ments. In Workshop on Visualization and data mining for computer security. ACM.
Gurubaran S. 2018. Hackers can Bypass Two-Factor Authentication with Phishing
Attack. https://gbhackers.com/bypass-two-factor-authentication/. Accessed on
July 23, 2018.

Abdul Serwadda and Vir V Phoha. 2013. Examining a large keystroke biometrics
dataset for statistical-attack openings. ACM Transactions on Information and
System Security (TISSEC) 16, 2 (2013), 8.

Muhammad Shahzad, Alex X Liu, and Arjmand Samuel. 2013. Secure unlocking
of mobile touch screen devices by simple gestures: you can see it but you can
not do it. In International Conference on Mobile computing & networking. ACM.
Shimmer. 2018. Wearable Sensor Technology | Wireless IMU | ECG | EMG | GSR.
http://www.shimmersensing.com/.

Babins Shrestha, Maliheh Shirvanian, Prakash Shrestha, and Nitesh Saxena. 2016.
The Sounds of the Phones: Dangers of Zero-Effort Second Factor Login based on
Ambient Audio. In Conference on Computer and Communications Security. ACM.
Prakash Shrestha and Nitesh Saxena. 2018. Listening Watch: Wearable Two-
Factor Authentication using Speech Signals Resilient to Near-Far Attacks. In
Conference on Security & Privacy in Wireless and Mobile Networks. ACM.
Hossein Siadati and Nasir Memon. 2017. Detecting Structurally Anomalous
Logins Within Enterprise Networks. In Conference on Computer and Communica-
tions Security. ACM.

SONY. 2018. SmartWatch 3 SWR50. https://www.sonymobile.com/us/products/
smart-products/smartwatch-3-swr50/.

Pin Shen Teh, Andrew Beng Jin Teoh, and Shigang Yue. 2013. A survey of
keystroke dynamics biometrics. The Scientific World Journal 2013 (2013).

Chee Meng Tey, Payas Gupta, and Debin Gao. 2013. I can be you: Questioning
the use of keystroke dynamics as biometrics. (2013).

Joe Windels. 2018. How to bypass 2FA (two-factor authentication). https://www.
wandera.com/bypassing-2fa/. Accessed on July 23, 2018.

Junshuang Yang, Yanyan Li, and Mengjun Xie. 2015. MotionAuth: Motion-
based authentication for wrist worn smart devices. In Pervasive Computing and
Communication Workshops. IEEE.

™~
&,

&
=)

@
=

'w
&

%
20,

[40

[41]
[42]
[43]
[44]

[45]

APPENDIX

A. Interaction Signature

Figure 8 shows the acceleration generated on U’s wrist when he
interacts with the desktop. As can be seen from the figure, a K2M
interaction creates distinct acceleration with a higher magnitude
while a typing interaction creates the acceleration of relatively
lower magnitude. When scrolling the mouse wheel, U’s wrist re-
mains almost stationary on the mouse that generates the accelera-
tion with low magnitude. We also observed the similar fluctuation
in the magnitude of the gyroscope signal when U interacts with a
terminal. Thus, these three different interactions possess unique
signatures that we utilize to build our Hacksaw system.

B. Keyboard Layout

We divide the keys on the keyboard into three regions — left region,
middle region, and right region. Figure 9. shows the division of
keys on the keyboard into these regions.

https://goo.gl/8C59yP
https://bit.ly/2VbXVGy
https://bit.ly/2VbXVGy
https://goo.gl/k37dLV
https://duo.com/solutions/features/user-experience/easy-authentication
https://duo.com/solutions/features/user-experience/easy-authentication
https://goo.gl/dyV1bR
https://goo.gl/A9TbRd
https://goo.gl/UnNd6U
https://goo.gl/UnNd6U
https://goo.gl/DDh7Hi
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://www.google.com/landing/2step/
https://www.google.com/landing/2step/
https://goo.gl/MbCj3W
https://www.fitbit.com/
http://www.lg.com/us/smart-watches/lg-W110-lg-watch-r
http://www.lg.com/us/smart-watches/lg-W110-lg-watch-r
https://goo.gl/sTmGPK
https://goo.gl/su6uS9
https://goo.gl/3isSUu
https://goo.gl/3isSUu
https://gbhackers.com/bypass-two-factor-authentication/
http://www.shimmersensing.com/
https://www.sonymobile.com/us/products/smart-products/smartwatch-3-swr50/
https://www.sonymobile.com/us/products/smart-products/smartwatch-3-swr50/
https://www.wandera.com/bypassing-2fa/
https://www.wandera.com/bypassing-2fa/

WiSec °20, July 8-10, 2020, Linz (Virtual Event), Austria

13
En
[%)
o
23
R
%0
o s i R ‘ et s ped
<]
o 10
o
3
b=
[
© 9
=

Scrolling M2K Typing K2M Scrolling 2K
0 5 10 15 20 25 30

Figure 8: Acceleration of user’s wrist when he interacts with a desk-

top.

Time (seconds)

Leftregion | Middle region | Right region

Figure 9: Keyboard layout

Table 1: List of features used in Hacksaw.

[Feature [Description

Min minimum value of signal

Max maximum value of signal

Mean mean value of signal

Median median value of signal

Variance variance of signal

Standard deviation standard deviation of signal

MAD median absolute deviation

IOR inter-quartile range

Power power of signal

Energy energy of signal

Spectral Entropy distribution of energy in signal

Autocorrelation similarity of signal

Kurtosis peakedness of signal

Skewness asymmetry of signal

Peak-to-peak peak-to-peak amplitude

Peak-magnitude-to-rms ratio ratio of largest absolute value to]
root-mean-square (RMS) value of signal

Median frequency median frequency of signal

Peak counts average nuprer of peaks and troughs per
100 ms of signal
dynamic time warping to compute

DTW MR . . .
similarity of inter-axis readings

C. Feature List

Hacksaw uses various statistical features extracted from accelerom-
eter and gyroscope sensors when predicting interactions. Table 1
lists these features. Specifically, Feature Extractor computes a fea-
ture vector over each block of motion data received from Segmenter.
Feature Extractor computes first 18 statistical features listed in Ta-
ble 1 over each of the x, y, z axes readings and from magnitude (
m = /x2 + y% + 22) of accelerometer and gyroscope sensor. It also
uses dynamic time warping (DTW) to compute the similarity of
inter-axis readings. For each of the accelerometer and gyroscope
sensors, three DTW values, each corresponding to DTW of x- and
y-axes readings, x- and z-axes readings, and y- and z-axes readings,
are computed. Thus, Feature Extractor results in 150 (= (18%4+3)%2)
features from each block of motion data.

Prakash Shrestha and Nitesh Saxena

D. Performance of Interaction Predictor:

Figure 10 shows FPR and FNR plots of Interaction Predictor for
various interaction similarity threshold (Oinseract)-

-
=)
g
=)

zos Zos
g £ /
= &
£ 06 o6 /
= T
g [9)
So4 504
P
g g
W 0.2 & 0.2

0.0 0.0

0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Similarity Score Similarity Score

(a) Desktop (b) Laptop

Figure 10: FPR and FNR over different similarity score for Interac-
tion Predictor of Hacksaw.

E. Hacksaw Parameters

All the parameters and their values used in Hacksaw are presented
in Table 2. To find an optimal value for the parameters other than
those mentioned earlier in Section 6.1, we employ the following
approach. To find the minimum duration of an interaction, we an-
alyzed all the keyboard-mouse related events in our dataset and
observed that none of the interactions were less than 25 ms. So, we
chose 25 ms as “Min. duration”. To find the maximum duration of
typing and scrolling interactions, we evaluated our approach for dif-
ferent durations between (500-1500) ms. Our approach performed
best with 500 ms, hence we picked it as “Max. duration”. For K2M,
we noted the maximum duration of K2M for each participant and
used their average (rounded to the nearest 100) as “Max. duration
for K2M”. To find an optimal value for typing threshold (v), we
measured the minimum typing speed of all our participants. We
used the minimum of all minimum individual typing speed as a
threshold so that none of the legitimate users are incorrectly kicked
out solely based on his typing speed. We found v = 2 keys/second
as the typing threshold (rounded to nearest whole number) for
Typing Speed Checker.

Table 2: Hacksaw Parameters.

‘ Components ‘ Parameters ‘ Values ‘
Min. duration 25 ms
Interaction Max. duration 500 ms
. 3500 ms for Desktop;
Generator Max.duration for K2M 3000 ms for Laptop
Idle threshold 1s
Similarity threshold 0.90 for Desktop;
(Ointeract) 0.85 for Laptop
‘Window size (w) 18
Decision Slmllam}/ threshold (Gyyip) | 60%
Module Bonus window (b) 1,2
Typing threshold (v) 2 keys/sec
Bonus flag (f) 2

	Abstract
	1 Introduction
	2 System and Adversarial Models
	2.1 System Model
	2.2 Adversarial Model

	3 System Architecture
	3.1 Interactions in Hacksaw
	3.2 Real-world Architecture of Hacksaw

	4 Design and Implementation
	4.1 Data Generator
	4.2 Authenticator

	5 Data Collection
	6 Evaluation and Results
	6.1 Optimal Value Selection
	6.2 Performance with Selected Parameters

	7 Related Work
	8 Conclusion and Future Work
	References

