
MagicPairing: Apple’s Take on Securing Bluetooth Peripherals
Dennis Heinze

Secure Mobile Networking Lab
TU Darmstadt, Germany
dheinze@seemoo.de

Jiska Classen
Secure Mobile Networking Lab

TU Darmstadt, Germany
jclassen@seemoo.de

Felix Rohrbach
Cryptoplexity

TU Darmstadt, Germany
felix.rohrbach@cryptoplexity.de

ABSTRACT
Device pairing in large Internet of Things (IoT) deployments is a
challenge for device manufacturers and users. Bluetooth offers a
comparably smooth trust on first use pairing experience. Bluetooth,
though, is well-known for security flaws in the pairing process.
In this paper, we analyze how Apple improves the security of Blue-
tooth pairing while still maintaining its usability and specification
compliance. The proprietary protocol that resides on top of Blue-
tooth is called MagicPairing. It enables the user to pair a device
once with Apple’s ecosystem and then seamlessly use it with all
their other Apple devices.
We analyze both the security properties provided by this protocol
as well as its implementations. In general, MagicPairing could be
adapted by other IoT vendors to improve Bluetooth security. Even
though the overall protocol is well-designed, we identified multiple
vulnerabilities within Apple’s implementations using over-the-air
and in-process fuzzing.

CCS CONCEPTS
• Security and privacy → Systems security; Software security
engineering; Software reverse engineering; • Networks→ Appli-
cation layer protocols.

KEYWORDS
Bluetooth, Pairing, Security

ACM Reference Format:
Dennis Heinze, Jiska Classen, and Felix Rohrbach. 2020. MagicPairing: Ap-
ple’s Take on Securing Bluetooth Peripherals. In 13th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec ’20), July 8–10,
2020, Linz (Virtual Event), Austria. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3395351.3399343

1 INTRODUCTION
Bluetooth device pairing has a long history of security flaws [1, 2,
6, 15, 25, 26, 29]. While most issues were fixed in the Bluetooth 5.2
specification [7], it is reasonable to assume that even this version
is not bullet-proof. Adding further layers of encryption within the
applications using Bluetooth is one solution many IoT developers
chose [10]—but this leads to their devices being incompatible in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8006-5/20/07. . . $15.00
https://doi.org/10.1145/3395351.3399343

communicating with third-party applications and drains battery.
Thus, encrypting data twice is no satisfying solution to this problem.

Looking back into the history of Bluetooth security issues, it is
not the encryption itself that has been exploited frequently. Most
problems originated from the initial key negotiation and connection
setup. In Bluetooth, trust is established on first use by generating a
permanent key. This permanent key protects device authenticity,
message integrity, and message confidentiality [7, p. 269]. It is
established individually between each pair of devices and only
changes when a user manually deletes and reestablishes a pairing.
In Classic Bluetooth, the permanent key is called Link Key (LK),
while it is called Long Term Key (LTK) in Bluetooth Low Energy
(BLE)—however, they can be converted into each other [7, p. 280].
For the duration of each Bluetooth connection, a session key is
derived from the permanent key. Thus, if a device is out of reach or
switched off, this invalidates a session key.

In modern IoT deployments, Bluetooth device pairing has two
major shortcomings: (1) It does not scale for pairing to many de-
vices within an existing infrastructure, and (2) once the permanent
key is leaked, all security assumptions break for past and future
connections. The permanent key can either be attacked by an ac-
tive Machine-in-the-Middle (MITM) during pairing [6, 15, 25] or by
Remote Code Execution (RCE) vulnerabilities within the chip [9].

Apple solves both challenges by introducing a protocol called
MagicPairing. It pairs AirPods once and then enables the user to
instantly use them on all their Apple devices. Security is improved
by generating fresh “permanent” keys based on the user-specific
iCloud keys for each session. Seamless ecosystem integration and
security are imperative, since AirPods are able to interact with the
Siri assistant.

Despite being a proprietary extension, MagicPairing is specifica-
tion-compliant to the Host Controller Interface (HCI), and thus, can
use off-the-shelf Bluetooth chips. The general logic ofMagicPairing
could be integrated into any cloud-based IoT ecosystem, increasing
relevance for the security community in general. Our contributions
on research of MagicPairing are as follows:

• We reverse-engineer the MagicPairing protocol.
• We analyze the security aspects provided by this protocol
and their applicability to other wireless ecosystems.

• We document the proprietary iOS, macOS, and RTKit Blue-
tooth stacks.

• Wemanually testMagicPairing for logical bugs and automat-
ically fuzz its three implementations.

• We responsibly disclosed multiple vulnerabilities.

While the overall idea of MagicPairing is new and solves short-
comings of the Bluetooth specification, we found various issues
in Apple’s implementations. As MagicPairing is available prior to
pairing and encryption, it poses a large zero-click wireless attack

111

https://doi.org/10.1145/3395351.3399343
https://doi.org/10.1145/3395351.3399343

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Heinze et al.

iPhone

iCloud

AirPodsMasterKey
MasterHint

1a Key Creation

1b Key Distribution
accKey via SSP and AAPSetup ???

Pairing
BdAddrBlob

2○ Hint
hint0𝑥10=enc𝐸𝐶𝐵(MasterHint, BdAddrBlob)
nonce_host0𝑥10=arc4_rand()
ratchet_host0𝑥4

while local_ratchet < ratchet:
accKey=enc𝐸𝐶𝐵(accKey, 0x10*0x00)

Generate authentication and encryption key:
SIV_Key0𝑥20=enc𝐸𝐶𝐵(accKey,

”bt_aessivauthentbt_aessivencrypt”)
3○ Ratcheting
AES_SIV0𝑥20=enc𝑆𝐼𝑉 (SIV_KEY, rand_airpod+nonce_host

+addr_airpod)
ratchet_airpod0𝑥4

4○ AES-SIV
AES_SIV0𝑥20=enc𝑆𝐼𝑉 (SIV_KEY, nonce_host+rand_host

+rand_airpod+hint) unpack & check

5○ Status Success & Link Key Derivation
status

sk_pre1=enc𝐸𝐶𝐵(rand_host, rand_airpod)
sk_pre2=enc𝐸𝐶𝐵(rand_airpod, ’\x00’*0x10)
while i != 16:
link_key[i]=sk_pre1[i]+sk_pre2[i]

calculate accKey and SIV_Key

AAP: UpdateMagicCloudKeys sends
the new accKey to the AirPods

𝐾𝐷𝐹1

𝐾𝐷𝐹2

𝐾𝐷𝐹3𝐾𝐷𝐹3

Figure 1:MagicPairing protocol steps.

surface. We found that all implementations have different issues,
including a lockout attack and a Denial of Service (DoS) causing
100 % CPU load. We identified these issues performing both generic
over-the-air testing and iOS in-process fuzzing.

Our fuzzing techniques can also be used to test other Bluetooth
stacks and protocols. The Proof of Concepts (PoCs) for the identified
vulnerabilities as well as the over-the-air fuzzing additions are
available within the InternalBlue project on GitHub. The ToothPicker
in-process fuzzer part that integrates into InternalBlue will follow
soon, but has to be slightly delayed due to further findings [13].

This paper is structured as follows: Section 2 gives an overview of
the reverse-engineered MagicPairing protocol. Its security proper-
ties are explained in Section 3. Implementation internals regarding
Apple’s Bluetooth stacks as well asMagicPairing-specific details are
provided in Section 4. Then in Section 5, we explain our fuzzing
setup used to identify the vulnerabilities explained in Section 6. We
conclude our work in Section 7.

2 THE MAGICPAIRING PROTOCOL
MagicPairing is a proprietary protocol providing seamless pairing
capabilities, for instance between a user’s AirPods and all their
Apple devices. This is achieved by synchronizing keys over Apple’s
cloud service iCloud. The ultimate goal of theMagicPairing protocol
is to derive a Bluetooth Link Key (LK) that is used between a single
device and the AirPods. A fresh LK is created for each connection,
which significantly reduces the lifetime of this LK.

When a new or reset pair of AirPods is initially paired with an
Apple device belonging to an iCloud account, Secure Simple Pair-
ing (SSP) is used [7, p. 271ff]. All subsequent connections between
the AirPods and devices connected to that iCloud account will use
the MagicPairing protocol as pairing mechanism. MagicPairing in-
volves multiple keys and derivation functions. It relies on Advanced
Encryption Standard (AES) in Synthetic Initialization Vector (SIV)
mode for authenticated encryption [11].

The protocol mainly consists of five phases. The protocol flow is
visualized in Figure 1 and explained in the following. MagicPairing
depends on a shared secret between the two participants. There-
fore, the first phase establishes and exchanges a secret, followed by
phases of the actual protocol. As the protocol is not publicly docu-
mented, our naming relies on debug output and strings found in
the respective components, i.e., the Bluetooth daemon bluetoothd
for iOS and macOS, as well as the AirPod firmware. Further imple-
mentation and Bluetooth stack details follow later in Section 4.

2.1 Phase 1: Key Creation and Distribution
MagicPairing relies on a shared secret between the AirPods and a
user’s iCloud devices, the Accessory Key (also accKey). This key
is created by the first device pairing AirPods for a specific iCloud
account. After establishing an encrypted Bluetooth connection
using SSP, the Accessory Key needs to be transmitted to the AirPods.
Apple is using the AAP Protocol1 for the Accessory Key transfer. In
1AAP is used for communication between a device and AirPods. While it is only used
with the abbreviation AAP, it might stand for Apple AirPod Protocol. Its services all
revolve around configuring AirPods and obtaining information from them, such as
firmware updates, getting and setting tapping actions, or exchanging key material.

112

Apple’s Take on Securing Bluetooth Peripherals WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

addition to the Accessory Key, the host also creates an Accessory
Hint, which uniquely identifies the connection between an iCloud
account and the target device. The initiating device uses the iCloud
account’s Master Key and Master Hint to create the Accessory Key
and the Accessory Hint. In case these Master credentials do not
exist yet, the device initializes them with random bytes. Another
component that is needed to create the Accessory Key and Accessory
Hint is the so-called Bluetooth Address Blob, which is a deterministic
mutation of the Bluetooth address of the targeted device, as shown
in Listing 1. The Bluetooth Address Blob is then encrypted with the
Master Key using AES in ECB mode to create the Accessory Key.
The Accessory Hint is created by encrypting the Bluetooth Address
Blob with the Master Hint, respectively.

After the initial setup, both devices share the same Accessory Key.
All devices logged into the iCloud account can generate the same
Accessory Key. In the following example, the device connects to the
AirPods, but all steps could also happen in the opposite direction.
BdAddrBlob [1:5] = address [5:0]
BdAddrBlob [6:9] = address [1:4] ^ address [0:3]

Listing 1: Creating a Bluetooth Address Blob.

2.2 Phase 2: Hint
The first repeating phase in the MagicPairing protocol is the Hint
phase. It ensures that both sides will agree on the same fresh session
key in the end that belongs to the correct device. The device initiates
the pairing by sending a Hint message. The Hint message includes
three entries: the hint, a random nonce generated by the initiating
host, and a Ratchet. The Ratchet is a counter used in later steps of
the pairing process to rotate keys.

The receiving end performs a local Accessory Key table lookup
for the connecting device. The AirPods use the hint that is included
in the Hint message as a reference, iOS and macOS devices use the
connecting device’s Bluetooth address to look up the key. If no key
is found, the protocol is aborted with a Status Message indicating
that the initiating device is unknown.

2.3 Phase 3: Ratcheting
The Ratcheting phase is essentially a key rotation and derivation
phase. The goal of Ratcheting is to renew and maintain short-lived
session keys [21]. First, the Accessory Key is rotated and then a SIV
Key is derived from the rotated key. The Accessory Key is rotated by
encrypting a buffer of 16 null-bytes with the current Accessory Key
using AES in Electronic Codebook (ECB) mode. After one rotation
step, the current counter, or Ratchet, is incremented. This is done
until the local Ratchet equals the Hint’s Ratchet. Then, the SIV Key
is derived from the Accessory Key by encrypting the static 32 B
string bt_aessivauthentbt_aessivencrypt with the Accessory
Key using AES in ECB mode. Next, an AES-SIV value is created. For
this, the device creates a local random value, concatenates it with
the received nonce and its own Bluetooth address, and encrypts
it with the SIV Key. This time, AES is used in SIV mode without a
nonce or any additional data. At the end of this phase, a Ratchet
AES-SIV message is sent back to the initiating device. It contains
the local Ratchet value, as well as the AES-SIV value. The initiating
device executes the same key derivation steps as mentioned above

using the received Ratchet value. This leads to both devices having
the same updated Accessory Key and SIV Key. Using the derived SIV
Key, the initiating device can now decrypt the AES-SIV value to
unpack the random value of the responding device.

2.4 Phase 4: AES-SIV
The initiating device will now create another AES-SIV value. How-
ever, this one is different from the one that the responding device
created before. First, the device creates a new random value. Then it
concatenates its nonce value, the new random value, the previously
received AirPods random value, and the hint value. This 64 B value
is then encrypted with the derived SIV Key using AES in SIV mode
and sent to the responding device. If the AirPods can decrypt the
received data, they send a MagicPairing Status success message.

2.5 Phase 5: Link Key Derivation
Finally, a Bluetooth-compliant connection LK is derived. First, two
Session Pre Keys are created and XORed. The Session Pre Key 1 is
created by encrypting the responding device’s random value with
the initiating device’s random value as key using AES. The Session
Pre Key 2 is created by encrypting a 16 B null-byte buffer with the
responding device’s random value using AES.

It is important to note that even thoughMagicPairing is a custom
key derivation protocol, the further usage of this key is still com-
pliant to the Bluetooth specification and does not require any mod-
ifications to the Bluetooth chip. When establishing an encrypted
connection, the chip sends an HCI command to ask the host for the
stored LK [7, p. 1948]. In case of MagicPairing, the LK is not taken
from the host’s storage but freshly created, which is completely
transparent to the chip. In either case, the LKs is stored on the
host. However, it is only short-lived within MagicPairing, while it
is permanent for a normal Bluetooth pairing.

3 SECURITY PROPERTIES
The security goals of the MagicPairing protocol seem to be to pro-
vide authentication and a fresh shared key for each connection. It
uses a symmetric ratcheting algorithm and authenticated encryp-
tion to achieve these goals.

The idea of ratcheting was introduced by Borisov, Goldberg,
and Brewer [8]. They introduced a continuous Diffie-Hellman key
exchange providing forward and post-compromise secrecy within
a session. Marlinspike and Perrin [21] extended this notion in the
Double Ratchet algorithm to include a second, symmetric ratchet
that updates the key while one party is offline. The symmetric
version only provides forward secrecy, but no post-compromise
secrecy.

The MagicPairing protocol uses the symmetric ratcheting and
therefore does not provide post-compromise secrecy. However, the
usage of no expensive public-key cryptography makes this protocol
feasible for usage with IoT devices like the AirPods. Further, note
that MagicPairing uses ratcheting in a slightly different way than
the previous work: Instead of creating a new key per message,
the protocol creates a new key per Bluetooth connection. What is
defined in the Double Ratchet algorithm as message key is therefore
a connection key in this protocol.

113

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Heinze et al.

In the Double Ratchet algorithm, the symmetric ratchet consists
of a KeyDerivation Function (KDF) that, given a chain key, produces
a new chain key and an independent message key. This is done
for each new message, so each new message gets encrypted with
a new key. As the KDF cannot be inverted, the knowledge of the
chain key at some point only allows to calculate future chain and
message keys, but no previous chain and message keys. Further,
the knowledge of a message key does not enable an adversary to
calculate any of the chain keys. MagicPairing uses two separate
KDFs to accomplish the same goal: The first KDF,

KDF1 (𝑘) = enc𝐸𝐶𝐵 (𝑘, 016),

is used to update the chain key. By using plain AES keyed with the
old chain key to encrypt a constant (here: the bit string consisting
of only zeros), it uses the Pseudo-Random Function (PRF) property
of AES, which guarantees that without knowledge of the old chain
key 𝑘 , the new chain key is indistinguishable from a random key.
The second KDF,

KDF2 (𝑘) = (enc𝐸𝐶𝐵 (𝑘, 𝑐1), enc𝐸𝐶𝐵 (𝑘, 𝑐2)),

where 𝑐1 is the string bt_aessivauthent and 𝑐2 the string bt_
aessivencrypt, produces a connection key, which itself consists
of two different key parts, an authentication and an encryption part.
By the same argument as for KDF1, the chain key cannot be calcu-
lated from the produced key and both key parts are independent.

The ratchet is initialized with the account key and the position
in the ratchet is synchronized by the values ratchet_host and
ratchet_airpod (see Figure 1).

For the encryption of the messages between the host and the Air-
Pod, AES is used in the SIV mode of operation. SIV, an authenticated
encryption mode, was introduced by Rogaway and Shrimpton [24]
and standardized in the combination with AES in RFC5297 [11]. It
is used without any headers in MagicPairing, which is secure as
long as the entropy of each message is high enough. As all mes-
sages encrypted with AES-SIV contain a new random number, the
entropy is sufficient.

Finally, MagicPairing uses a third KDF to generate the key used
for the Bluetooth connection, based on two random values, one
generated by the host and one generated by the AirPod:

KDF3 (𝑟ℎ, 𝑟𝑎) = enc𝐸𝐶𝐵 (𝑟ℎ, 𝑟𝑎) ⊕ enc𝐸𝐶𝐵 (𝑟𝑎, 016)

Again, this uses the PRF property of plain AES to generate a key
that is indistinguishable from random as long as not both random
values are known.

Knowledge of the final key implies knowledge of the SIV key,
which in turn implies the knowledge of the account key, which iden-
tifies the party as being connected to the iCloud account. Further,
for each connection a new key is used in a forward-secret manner.
Therefore, the protocol meets the security goals of authentication
and forward secrecy.

4 IMPLEMENTATION DETAILS
In the following, we discuss Apple-specific implementation details,
which impact our security analysis. Section 4.1 compares the three
Bluetooth stacks. As all of them differ significantly, the attack sur-
face as well as bugs in their implementations vary. Section 4.2 lists
the MagicPairing message formats, which are relevant for fuzzing
the protocol as well as for understanding the fuzzing attacks and
results. Section 4.3 explains the advertisements sent by AirPods, and
based on these, connections are initiated. Finally, we spot many
spelling mistakes, as shown in Section 4.4, which outline the Mag-
icPairing code quality.

4.1 Apple’s Bluetooth Stacks
Apple uses three fundamentally different Bluetooth stacks in their
recent devices. Each stack is for an individual device type and
supports a subset of features. Thus, the protocols they support
have multiple implementations. While this circumstance helps us to
reverse engineer these protocols, it increases maintenance overhead
forApple. From a security perspective, this results in different issues
in these stacks, as shown later in Section 6.

RTKit is a separate framework for resource-constrained embed-
ded devices. While this separation to reduce features makes sense,
iOS and macOS also have individual Bluetooth stacks. As they are
closed-source and there is only little public documentation, we
provide an overview in the following. Figure 2 compares all stacks.

4.1.1 macOS. The most recent version of the macOS Bluetooth
stack was investigated and documented previously to integrate
InternalBlue [28]. The macOS kernel exposes a user-space IOKit
device-interface for Bluetooth [4]. IOKit communicates using a
Mach port with the IOBluetoothFamily driver, which supports

User Space

Kernel Space

Broadcom Bluetooth Chip

XNU

IOBluetoothFamily

IOKit

IOBluetooth

bluetoothd

CoreBluetooth ≠

≠

Broadcom Bluetooth Chip

XNU

bluetoothd

CoreBluetooth

Marconi Bluetooth Chip

PHY Firmware
Controller Firmware

RTKit OS

Figure 2: Apple’s Bluetooth stacks:macOS, iOS, and RTKit.

114

Apple’s Take on Securing Bluetooth Peripherals WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

connectivity to USB, Universal Asynchronous Receiver-Transmitter
(UART), and PCIe chips. User-space applications can connect to
Bluetooth devices using the IOBluetooth private Application Pro-
gramming Interface (API), which exposes methods to access the
chip via HCI and send Asynchronous Connection-Less (ACL) data.
The macOS bluetoothd manages all Bluetooth logic and connects
to other daemons such as bluetoothaudiod for music streaming.
The public API to access Bluetooth on macOS is CoreBluetooth,
which communicates with bluetoothd via Cross-Process Com-
munication (XPC) and further abstracts the methods exposed by
IOBluetooth.

4.1.2 iOS. Apple’smobile operating system is iOS, with derivatives
called iPadOS, tvOS, and watchOS. On iOS, the Bluetooth chip is
exposed as a serial character device2 to user space. On initialization,
bluetoothd directly connects to the exposed Bluetooth socket of
this character device. Then, bluetoothd offers Bluetooth-related
functionality as an XPC service. Similar to macOS, this XPC ser-
vice is accessed by the public CoreBluetooth API. However, iOS
CoreBluetooth does not allow apps to create and use Classic Blue-
tooth connections, which is slightly different from macOS. Instead,
it offers a higher-level application protocol called External Accessory
that can be used in combination with Made for iPhone/iPad/iPod
(MFi) certified Bluetooth devices [5].

Even though HCI is not openly accessible, it is needed by system
components. bluetoothd exposes a Mach port for features like
HCI, which can only accessed by system components. This private
framework is called MobileBluetooth.

4.1.3 RTKit and Marconi. For embedded devices, Apple is using a
real-time operating system based on the RTKit framework. RTKit
is used on multiple embedded controllers and in all recent Blue-
tooth peripherals, such as the AirPods 1, 2, and Pro, Siri Remote
2, Apple Pencil 2, and Smart Keyboard Folio. While RTKit is not
well-known, it has an incredibly high market share. For example,
AirPods are accounted for 60 % of the global wireless earbud mar-
ket [23]. Moreover, RTKit powers a number of other devices and
chips in the Apple ecosystem, such as the Always-On Processor
(AOP) firmware included in most of Apple’s mobile devices like the
iPhone and AppleWatch.

The RTKit framework lacks public documentation by Apple but
has been briefly mentioned by other researchers [17]. The newest
AirPod Pro firmware strings reveal version information, such as
RTKitAudioFrameworkW2, RTKitOSPlatform-620.60.2616, and
RTKit2.2.Internal.sdk. The latter lets us conclude that Apple
has an internal Software Development Kit (SDK) used to develop
RTKit applications.

We consolidate all these peripherals into a single Bluetooth stack,
however, their firmware is very different due to their technologies
and use cases. The Siri Remote, Apple Pencil, and Smart Keyboard
only use BLE, while the AirPods rely on both BLE and Classic
Bluetooth. Nonetheless, the basic RTKit code is the same.

On the AirPods, the communication to the Bluetooth chip is
provided via the Apple Controller Interface (ACI) instead of the

2A character device is exposed for all Broadcom UART chips, which are at least present
in the iPhone 6, SE, 7, 8, X, XR, and various iPads. iOS also supports Marconi (newer
AppleWatches) and Broadcom PCIe (iPhone XS and 11) Bluetooth chips.

specification-compliant Host Controller Interface (HCI). This is be-
cause the AirPods use Apple’s new Bluetooth chipMarconi. An older
version of Apple’s proprietary Bluetooth PacketLogger contains a
file ACI_HCILib.xml, which names and partially describes all ACI
commands. Some of these are AirPod-specific, such as synchroniza-
tion of a pair of AirPods and primary to secondary switching. The
Marconi Bluetooth chip firmware itself is also based on the RTKit
framework, as it is just another peripheral.

Note that it is very complex to debug root causes for crashes on
the AirPods. As they are an embedded device, they reboot within
approximately 2 s. Thus, a Bluetooth connection reset is indistin-
guishable from a device reboot when performing wireless tests.

4.2 MagicPairing Messages
The general layout of aMagicPairing message is shown in Figure 3a.
It starts with a 2 B header followed by data depending on the type
of the message. In general, there are two different types of messages
with a slightly different structure. The first type, a Key Message,
contains key material (such as the AES SIV, Ratchet, or Hint data).
The second type, a Short Message, contains just one byte of data
after the header. The data in the Key Message is in a Type Length
Value (TLV) structure, as shown in Figure 3b. The number of keys
is encoded after the header. The Short Message contains a fixed
amount of data after the header.

The MagicPairing Ping message can initiate the protocol. When
a device receives a Ping message, it replies with a Hint message.
While the Ping message does not necessarily need any additional
data, it is still 3 B with the data set to 0x00. The Status message
indicates success or, in case of an error, the reason for failing. The
Ratchet type message seems to be currently unused, as its reception
handler implementation is empty on iOS and macOS bluetoothd.

4.3 MagicPairing AirPods Advertisements
In addition to the pairing mechanism provided by MagicPairing, it
also offers the capability to decrypt BLE advertisements sent by the
AirPods. These advertisements have been shown to be linkable to
AirPods in general [20]. Advertisements notify other Apple devices
of the presence of the AirPods and encode battery state information.
When an iOS device receives advertisements for a pair of AirPods
that belong to the same Apple ID as the iOS device, a pop-up shows
an AirPod image, the name of the AirPods, and the current battery
state. The encrypted part constitutes the MagicPairing data. A new
key is introduced, which is called MagicPairing EncryptionKey.

4.4 Code Quality
The MagicPairing implementations on iOS and macOS contain vari-
ous spelling mistakes in logging messages, and in case of themacOS
bluetoothd also in function names. For example, the words Ratchet
and Upload were spelled differently various times. As these mis-
takes vary with the stack, each stack was probably implemented
by a different developer. While spelling mistakes are not directly
related to flaws in an implementation, they leave the impression
the code was not extensively reviewed, and development probably
outsourced.

115

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Heinze et al.
WiSec ’20, July 08–10, 2020, Linz, Austria Anon. Submission Id: 28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Message Type MagicPairing Version
}
MagicPairing Header

MagicPairing Data

Status Description
0 Success
1 Internal Error
2 Key Not Found
3 Invalid Parameters
4 Pairing Busy
5 Unsupported Version
6 Operation Timed Out
7 Failed Verification
8 No Keys for Peer

ID Description Type
0x01 Hint Key Message
0x02 Ratcheting Key Message
0x03 AES SIV Key Message
0x04 Ratchet Key Message
0xf0 Ping Short Message
0xff Status Short Message

(a) MagicPairing message format.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Num Entries Key Type

Key Length

Key (variable length)

Key Type Description
0x0010 Hint
0x0020 Nonce
0x0040 Unknown
0x0080 AES SIV
0x0100 Ratchet

(b)MagicPairing key message data.

Figure 3:MagicPairing packet formats.

(a) macOS 15.3 bluetoothd upload spelling.

(b)macOS 15.3 bluetoothd ratchet spelling.

(c) iOS 13.3 bluetoothd ratchet spelling.

Figure 4: Spelling mistakes in iOS andmacOS bluetoothd.

4.4 Code Quality
The MagicPairing implementations on iOS and macOS contain vari-
ous spelling mistakes in logging messages, and in case of themacOS
bluetoothd also in function names. An excerpt of these spelling mis-
takes is shown in Figure 4. For example, the words Ratchet and

Upload were spelled differently various times. Also, as these mis-
takes vary with the stack, each stack was probably implemented
by a different developer. While spelling mistakes are not directly
related to flaws in an implementation, they do leave the impression
the code was not extensively reviewed.

5 FUZZING SETUP
The wireless attack surface of MagicPairing is rather large. First of
all, it is used prior to pairing and encryption.MagicPairing provides
a connection via the Logical Link Control and Adaptation Protocol
(L2CAP), which is used for all kinds of data transfer within Blue-
tooth [6, p. 252]. Second, the MagicPairing attack surface is further
enlarged by the different implementations for iOS, macOS, RTKit,
which all might have individual flaws. Instead of using a common
library, the macOS implementation is written in Objective C, the
iOS implementation is based on C/C++, and the RTKit firmware
on the AirPods is a slightly feature-restricted variant written in C.
Last, MagicPairing is always available on all Apple devices with
Bluetooth enabled, no matter if the user owns AirPods.

After the reverse engineering in Section 2 and further looking
into implementation details in Section 4, we have a basic under-
standing of the protocol flow and message types. Based on this
knowledge, we perform further tests. We implement both, a generic
over-the-air fuzzer (Section 5.1) and an iOS in-process fuzzer (Sec-
tion 5.2).While the over-the-air fuzzer is rather generic and required
to confirm vulnerabilities, it is limited in speed and does not provide
coverage. In contrast, the iOS in-process fuzzer is faster and not
limited by connection resets, but requires a lot of platform-specific
tuning.

(a) MagicPairing message format.

WiSec ’20, July 08–10, 2020, Linz, Austria Anon. Submission Id: 28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Message Type MagicPairing Version
}
MagicPairing Header

MagicPairing Data

Status Description
0 Success
1 Internal Error
2 Key Not Found
3 Invalid Parameters
4 Pairing Busy
5 Unsupported Version
6 Operation Timed Out
7 Failed Verification
8 No Keys for Peer

ID Description Type
0x01 Hint Key Message
0x02 Ratcheting Key Message
0x03 AES SIV Key Message
0x04 Ratchet Key Message
0xf0 Ping Short Message
0xff Status Short Message

(a) MagicPairing message format.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Num Entries Key Type

Key Length

Key (variable length)

Key Type Description
0x0010 Hint
0x0020 Nonce
0x0040 Unknown
0x0080 AES SIV
0x0100 Ratchet

(b)MagicPairing key message data.

Figure 3:MagicPairing packet formats.

(a) macOS 15.3 bluetoothd upload spelling.

(b)macOS 15.3 bluetoothd ratchet spelling.

(c) iOS 13.3 bluetoothd ratchet spelling.

Figure 4: Spelling mistakes in iOS andmacOS bluetoothd.

4.4 Code Quality
The MagicPairing implementations on iOS and macOS contain vari-
ous spelling mistakes in logging messages, and in case of themacOS
bluetoothd also in function names. An excerpt of these spelling mis-
takes is shown in Figure 4. For example, the words Ratchet and

Upload were spelled differently various times. Also, as these mis-
takes vary with the stack, each stack was probably implemented
by a different developer. While spelling mistakes are not directly
related to flaws in an implementation, they do leave the impression
the code was not extensively reviewed.

5 FUZZING SETUP
The wireless attack surface of MagicPairing is rather large. First of
all, it is used prior to pairing and encryption.MagicPairing provides
a connection via the Logical Link Control and Adaptation Protocol
(L2CAP), which is used for all kinds of data transfer within Blue-
tooth [6, p. 252]. Second, the MagicPairing attack surface is further
enlarged by the different implementations for iOS, macOS, RTKit,
which all might have individual flaws. Instead of using a common
library, the macOS implementation is written in Objective C, the
iOS implementation is based on C/C++, and the RTKit firmware
on the AirPods is a slightly feature-restricted variant written in C.
Last, MagicPairing is always available on all Apple devices with
Bluetooth enabled, no matter if the user owns AirPods.

After the reverse engineering in Section 2 and further looking
into implementation details in Section 4, we have a basic under-
standing of the protocol flow and message types. Based on this
knowledge, we perform further tests. We implement both, a generic
over-the-air fuzzer (Section 5.1) and an iOS in-process fuzzer (Sec-
tion 5.2).While the over-the-air fuzzer is rather generic and required
to confirm vulnerabilities, it is limited in speed and does not provide
coverage. In contrast, the iOS in-process fuzzer is faster and not
limited by connection resets, but requires a lot of platform-specific
tuning.

(b)MagicPairing key message data.

Figure 3:MagicPairing packet formats.

5 FUZZINGWITH TOOTHPICKER
The wireless attack surface of MagicPairing is rather large. First
of all, it is available prior to pairing—it provides a connection via
the Logical Link Control and Adaptation Protocol (L2CAP), which
is used for all kinds of data transfer within Bluetooth [7, p. 252].
Second, the MagicPairing attack surface is further enlarged by the
different implementations for iOS, macOS, RTKit. Instead of using
a common library, the macOS implementation is written in Objec-
tive C, the iOS implementation is based on C/C++, and the RTKit
firmware on the AirPods is a slightly feature-restricted variant writ-
ten in C [13]. Last, MagicPairing is always available on all Apple
devices with Bluetooth enabled, no matter if the user owns AirPods.

Based on our knowledge about MagicPairing and its implemen-
tations, we perform further tests. We implement both a generic
over-the-air fuzzer (Section 5.1) and an iOS in-process fuzzer (Sec-
tion 5.2). While the over-the-air fuzzer is platform-independent and
required to confirm vulnerabilities, it is limited in speed and does
not provide coverage. In contrast, the iOS in-process fuzzer is faster
and not limited by connection resets, but needs a lot of platform-
specific tuning. Our overall setup is explained in Section 5.3. As
we apply a rather specific tooling to enable iOS in-process fuzzing
with F RIDA, we further describe it in Section 5.4

5.1 Over-the-Air Fuzzing
An over-the-air fuzzer runs independently of the target system. Still,
the protocol needs to be re-implemented to fuzz inputs. Our fuzzer
extends InternalBlue, which already provides a generic interface to
add custom protocols on top of existing Bluetooth stacks, including
iOS and macOS [19]. This approach has two main advantages that
cannot be reached with in-process fuzzing:

(+) Platform Independence The fuzzer is independent of the
target device’s operating system or Bluetooth stack.

(+) Few False Positives The fuzzer behaves just like any other
Bluetooth peripheral. Anything found can be used compara-
tively easily for a PoC.

However, wireless Bluetooth fuzzing has various limitations that
motivate us to also perform in-process fuzzing:

(-) Connection Termination The connection is terminated
once a few invalid packets are received. Thus, a lot of time is
spent on reconnecting to the target. Moreover, it is difficult
to nearly impossible to distinguish between a terminated
connection and a crashed Bluetooth daemon.

(-) Speed The fuzzer’s speed is limited by the physical connec-
tion to the target.

(-) Coverage Without collecting information from the target,
the input cannot be adapted to trigger missing code paths.

As theMagicPairing protocol has low complexity, we implement
a generation-based fuzzer, which randomly generates valid and in-
valid messages based on the reverse-engineered protocol definition.
Apart from connecting to the target device, no further setup is re-
quired for fixed L2CAP channels. The fuzzer keeps sending the gen-
erated L2CAP payloads until it receives an HCI_Disconnection_
Complete event (see [7, p. 2296]). This indicates that the target de-
vice either disconnected due to multiple invalid received messages
or due to a crash. The fuzzer then tries to reconnect to the device.

The target device is additionally monitored using the PacketLog-
ger, which is available for macOS and also on mobile devices since
iOS 13 with a Bluetooth Profile [3]. This enables us to determine
if the device crashed and when the connection was terminated. A
crash can be detected by searching for the message “Connection to
the iOS device has been lost.”

In practice, the HCI_Disconnection_Complete event is quite
unreliable. In multiple occasions the connection was terminated,
but the fuzzer did not receive the event. This lowers the efficiency of
the fuzzer as it needs to estimate when a connection is terminated

116

Apple’s Take on Securing Bluetooth Peripherals WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

in case it did not receive the disconnection event. Moreover, to
reliably send packets and confirm events, we restricted the fuzzer
speed to 1–2 packets/s. Despite the mentioned issues, the fuzzer
ended up finding multiple bugs in the protocol implementations.

5.2 In-Process Fuzzing
An in-process, coverage-guided fuzzer improves the efficiencywhen
fuzzing the reception handlers of interesting L2CAP-based proto-
cols. While the throughput of messages and the stability of the
payload delivery is much higher than in the over-the-air implemen-
tation, the in-process fuzzer comes with a different set of drawbacks.

(-) Many False Positives The usual operation of the Bluetooth
daemon is altered, which can lead to unexpected behavior
or crashes that are related to the fuzzing operation itself.

(-) Platform Dependence Injecting and preparing the fuzzer
inside the target process differs significantly for different
operating systems. Even within the same Bluetooth stack,
function addresses and implementation details change with
updated versions and need to be adapted.

We reduce the false positives by minimizing the amount of
crashes related to the injected fuzzing code. This is done by ob-
serving any side-effects during fuzzing and patching the affected
functions.

RTKit currently cannot be altered, thus, only the macOS and
jailbroken iOS Bluetooth stack remain for in-process fuzzing. As
iOS jailbreakswere comparably rare in the past but became available
with checkm8 and checkra1n recently [16], we implement an in-
process fuzzer for iOS.

In practice, the iOS in-process fuzzer’s speed varies between
5–30 packets/s. Though, as connections are not dropped with in-
process fuzzing, the overall speedup is much higher.

5.3 Setup Overview
Figure 4 shows the fuzzing setup, with a main focus on the special-
ized in-process fuzzer. The in-process fuzzer is divided into two
components: (1) The manager running on a computer, and (2) the
fuzzing harness running on the target device.

The manager starts and maintains the fuzzing process. It injects
the fuzzing harness into the target process and handles the commu-
nication with it. Additionally, it maintains a set of crashes occurred
during fuzzing, a corpus to derive inputs, and coverage information
collected during fuzzing. The manager generates new inputs by
sending entries to the corpus of the input mutation component,
which randomly mutates the input based on a seed.

The fuzzing harness is divided into two sub-components. The
first component is a general fuzzing harness, which is responsible
for the overall fuzzing of bluetoothd. It creates virtual connections
and applies patches ensuring a stable fuzzing process. Moreover, it
collects code coverage and receives fuzzing input from the manager.
The second component, the specialized fuzzing harness, is specific
to the target function and protocol to be fuzzed, such as MagicPair-
ing. It is responsible for preparing the received input and calling
the function handler, as well as any other preparation needed to
fuzz the protocol-specific reception handler function.

The fuzzer is initialized with an initial corpus of valid proto-
col messages, i.e., function arguments. It then collects the initial
coverage by sending the initial corpus to the fuzzing harness. The
specialized harness executes the payloads. The collected coverage
is returned to the manager.

Once the initial coverage is collected, the actual fuzzing begins.
The manager picks one of the entries in the corpus and a seed
value. These are passed to the input mutator, which mutates the
input and sends it back to the manager. The manager sends the
mutated input to the specialized fuzzing harness. If desired, the
specialized fuzzing harness further mutates the input—which is
required for fields that require deterministic values or length fields.
In this case, the specialized fuzzing harness first reports themodified
input back to the manager before calling the function under test.
This ensures that the additional mutation is saved, even when
the injected harness crashes together with the target. While the
function is called, the harness collects basic block coverage. There
are three possible results of the function call:

Ordinary Return The functionwas executed successfully and
returns. The collected coverage is reported to the manager.

Exception The function results in an exception, which is re-
turned to the manager. The manager stores the input and
the exception as a crash.

Uncontrolled Crash The target, i.e., bluetoothd, crashes in
a thread not controlled by the fuzzing harness. It crashes and
generates a crash report. In this case, the exception cannot be
sent to the manger. However, the manager detects this crash
and stores the generated input as a crash. The corresponding
crash report is manually gathered from the operating system.

These results may contain false positives, even in the case of an
exception. Therefore, we verify identified crashes with the over-
the-air fuzzer.

TOOTHP CKER

iPhone Laptop

Coverage, Exceptions

TCP/usbmux

Input

General Fuzzing Harness
Specialized Fuzzing Harness

Manager

Input Mutation

Coverage

Corpus

Crashes OTA Fuzzer

Figure 4: ToothPicker fuzzing setup.

117

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Heinze et al.

5.4 Attaching the In-Process Fuzzer
Our in-process fuzzer is based on frizzer [18], which provides
a basic fuzzing architecture including coverage collection, corpus
handling, and input mutation. These are already a large part of the
manager component. Our fuzzer, like frizzer, is built on F RIDA,
which is a dynamic instrumentation toolkit [22]. F RIDA can inject
code into a target process using JavaScript. Thus, our fuzzing har-
ness is implemented in JavaScript and injected into bluetoothd.
The manager is implemented in Python, as F RIDA also provides
Python bindings. We use the test case generator radamsa as input
generator component [14].

On iOS, bluetoothd is lacking symbols. Nonetheless, we can
identify various functions through static reverse engineering. These
include creating a BLE handle, or creating an ACL handle, which is
needed to receive L2CAP data. Due to the lack of symbols, we need
to resolve function pointers via their static offsets to make them
callable with F RIDA. In the following example, these offsets are
valid for an iPhone 7 on iOS 13.3. In Listing 2, we call the function
that creates an ACL handle. The input arguments are a Bluetooth
address, and another state value set to 0 as found by dynamic
analysis. Similar to calling the ACL connection creation function,
we also call the specialized MagicPairing handler.

Even fake connections created as in Listing 2 can be discon-
nected. We keep the connection alive by overwriting the func-
tion OI_HCI_ReleaseConnection, named according to the debug
strings. Hooking and replacing such functions prevents connection
structures from being destroyed.

Note that this in-process fuzzing disconnection prevention does
not work for over-the-air fuzzing. When a connection is initiated
by the Bluetooth chip itself, it holds an HCI handle, which the
stack uses to reference the connection. Moreover, the chip holds
additional state to keep the connection alive. While we can control
bluetoothd with F RIDA hooks, we cannot overwrite chip-internal
behavior.

// Create a buffer for the Bluetooth address
var bd_addr = Memory.alloc (6);
// Resolve function address
var base = Module.getBaseAddress("bluetoothd");
var fn_addr = base.add(0 xc81a0); // iOS 13.3, iPhone 7
// Create JavaScript -callable function reference
var allocateACLConnection = new NativeFunction(fn_addr ,

"pointer", ["pointer","char"]);
// Write a (random) Bluetooth address to memory
bd_addr.writeByteArray ([0xca ,0xfe ,0xba ,0xbe ,0x13 ,0x37]);
// Call the function and create a forged ACL connection
var handle = allocateACLConnection(bd_addr , 0);

Listing 2: Creating a forged ACL handle using F RIDA.

Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Subtype: KERN_INVALID_ADDRESS at

0x00000000000000a8
VM Region Info: 0xa8 is not in any region. Bytes before

following region: 4298293080
[...]
Termination Signal: Segmentation fault: 11
Termination Reason: Namespace SIGNAL , Code 0xb
Terminating Process: exc handler [958]

Listing 3: Excerpt of anMP1-related crash log.

6 VULNERABILITIES IN THE MAGICPAIRING
IMPLEMENTATIONS

In the following, the identified vulnerabilities in the MagicPairing
protocol are described. All vulnerabilities are summarized in Table 1.

6.1 Null Pointer Dereferences
Testing theMagicPairing protocol resulted in multiple NULL pointer
dereferences or dereferencing addresses in the NULL page. The NULL
page is not mapped on 64 bit iOS and macOS. This results in a
bluetoothd crash. launchd immediately restarts bluetoothd af-
ter crashing. Thus, these bugs are merely a bluetoothd DoS. An
attacker does not have any control over the dereferenced value, and
we assume that these dereferences are not exploitable.

6.2 MP1: iOS Ratcheting
When sending a MagicPairing Ping message to an iOS device from
a Bluetooth device that is not a known pair of AirPods, it responds
that it does not have a hint for this sending device. If a Ratcheting
message is then sent to the device, bluetoothd will crash while
trying to dereference a pointer in the NULL page. Listing 3 shows an
excerpt of the crash log that is generated by the operating system.

The invalid access to address 0xa8 is caused by a missing check
for the return value of a lookup function shown in Listing 4. The
function looks up an entry in bluetoothd’s table of known Magic-
Pairing devices by the sender’s Bluetooth address and returns NULL.
The issue is that this return value is never checked and assumed to
be a pointer to a valid MagicPairing-related structure. Then, to re-
spond to the Ratcheting message, the structure is accessed at offset
0xa8, which leads to the crash.

6.3 MP2–5: macOS/iOS Hint and Ratcheting
MP2–5 have a similar cause as the previous dereference inMP1. The
return value of the lookup function is not properly verified. On iOS
andmacOS, this affects the Ratcheting (MP1, MP3, MP5) and theHint
(MP2, MP4) messages. As before, they lead to a dereference of an
invalid address, which is a fixed offset into aMagicPairing structure
at address 0x0. Thus, all vulnerabilities are equally unlikely to be
exploitable, other than crashing bluetoothd. The reason why the
Ratchetingmessages lead to different crashes on iOS is that the order
of keys in the message determines which fields in the mp_entry
are accessed.

void recv_mp_ratchet_aes_siv(char *bd_addr , char *data) {
[...]
// Returns NULL for unknown Bluetooth addresses
mp_entry = lookup_mp_entry_by_bd_addr(bd_addr);
[...]
// The NULL entry is dereferenced with an offset
memmove(mp_entry ->remoteAESSIV , data + aessiv_offset ,

0x36);
}

Listing 4: Pointer dereferenceMP1.

118

Apple’s Take on Securing Bluetooth Peripherals WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Table 1: List of identifiedMagicPairing and L2CAP vulnerabilities, status as of April 28 2020.

ID Attack Effect Detection Method OS Disclosure Status
MP1 Ratcheting Crash Over-the-Air, In-Process iOS Oct 30 2019 Not fixed
MP2 Hint Crash Over-the-Air, In-Process iOS Dec 4 2019 Not fixed
MP3 Ratcheting Crash Over-the-Air macOS Oct 30 2019 Not fixed
MP4 Hint Crash Over-the-Air macOS Oct 30 2019 Not fixed
MP5 Ratcheting Crash In-Process iOS Mar 13 2020 Not fixed
MP6 Ratcheting Abort Crash In-Process iOS Mar 13 2020 Not fixed
MP7 Ratcheting Loop 100 % CPU Load Over-the-Air macOS Oct 30 2019 Not fixed
MP8 Pairing Lockout Disassociation Manual iOS & macOS Feb 16 2020 Not fixed
L2CAP1 L2CAP Zero-Length Crash Over-the-Air RTKit Dec 4 2019 Not fixed
L2CAP2 L2CAP Groups Crash In-Process iOS 5–13 Mar 13 2020 Not fixed

6.4 MP6: Ratcheting Abort
This crash is caused by an assertion failure that leads to an abort.
The code that parses the Ratcheting message attempts to read from
the message buffer. An assertion ensures that it does not read be-
yond this buffer. However, if the assertion fails, the parser does
not return gracefully and instead calls abort, which leads to the
termination of bluetoothd.

6.5 MP7: Ratcheting Loop
The macOS bluetoothd can be forced to enter a ratcheting loop
with a very large iteration count. Unlike the previous vulnerabil-
ities, this issue is not solely caused by implementation mistakes,
but originates from an inherent problem in the protocol’s design.
The receiver trusts the values sent in the Hint message, without
verifying that it was actually sent by a known MagicPairing peer.
An attacker can forge the Ratchet value in the Hint message. The
Hint message also includes a nonce, but this is random. The Hint
value itself, which is encrypted and could be used to verify the
sender’s Bluetooth address, is ignored. Instead, macOS trusts the
connection’s Bluetooth address.

Setting the Ratchet to a very high value will cause bluetoothd
to enter a long ratcheting loop. The Ratchet field holds a 4 B value,
thus the maximum value of a Ratchet can be 0xffffffff. During
normal usage, however, the Ratchet is only incremented for every
pairing process. Therefore, it is rather small in practice. The attack
was tested on a MacBook Pro Early 2015, 13-inch, 2.9 GHz Dual
Core i5 on macOS Catalina 10.15 with an initial Ratchet value of 2.
Sending a Hint message with a Ratchet value of 0xffffffff caused
bluetoothd to enter a ratcheting loop, with the local Ratchet value
increasing at a rate of approximately 7000/s—causing a ratcheting
loop running multiple days.

During the ratcheting loop attack, the bluetoothd reception
thread is blocked. This disables further Bluetooth-based communi-
cation, for example, the device under attack can no longer receive
files via AirDrop.

6.6 MP8: Pairing Lockout
It is possible to corrupt the established pairing between an iOS or
macOS device and a pair of AirPods. For this, an attacker needs to
know the victim’s Bluetooth address as well as the target AirPods’
Bluetooth address. The attacker can manipulate the local ratchet

value of a host device by sending one or more Ratcheting messages
with a ratchet value higher than the device’s current one. The
current ratchet value can be obtained by sending a Ping message
to the host. It responds with a Hint message, which contains its
current local ratchet value. This value can then be incremented
and sent in a Ratcheting message. The keys for encrypting the AES-
SIV value are not required, as the ratchet value is sent in plaintext.
Therefore, an attacker can set a bogus value for the AES-SIV part
of the message and set the incremented ratchet value. Then, the
receiving host starts a ratcheting loop. As bluetoothd on iOS has a
timeout functionality, the forged ratchet value should not be chosen
too high. Once the ratcheting loop is finished, the host’s local ratchet
value is successfully increased, even if the decryption of theAES-SIV
entry of the message fails. This corrupts an active pairing because
the AirPods have a threshold value for the discrepancy between
their local ratchet value and the value received by the paired host.

This causes the AirPods to decline the continuation of theMagic-
Pairing protocol and thus the whole pairing process. The user does
not have any options to reset the MagicPairing data and does not
get any feedback about the error. The only solution is to reset the
AirPods and freshly pair them with the user’s iCloud account.

As shown in Figure 5, the attack can be conducted as follows:

iPhone/MacBookInternalBlue iPhone

Fake AirPods

1○ Set BdAddr

2○ Ping

3○ Hint
ratchet_host

4○ Ratcheting
ratchet_airpod=ratchet_host + 10 5○ Ratchet

Lockout

Figure 5: Lockout attack.

119

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Heinze et al.

(1) The attacker changes their Bluetooth address to that of the
target’s AirPods.

(2) The attacker connects to the victim and sends a Ping mes-
sage3 to initiate a MagicPairing process.

(3) The victim responds with a Hint message which contains its
current local ratchet value.

(4) The attacker increases this value by 10 and sends a Ratcheting
message with the incremented ratchet value and a random
AES-SIV value.

(5) The victim will start the ratcheting loop with the received
ratchet value and derive the SIV Key for decrypting the AES-
SIV value. As the AES-SIV value is random, the victim will
not be able to decrypt it and sends a Status message indicat-
ing an internal error. However, its local ratchet value stays
incremented and is not reset to its previous value.

The issue originates from using an untrusted ratchet to incre-
ment an internal value and execute a key rotation. As the ratchet
value is neither encrypted nor authenticated, an attacker can easily
forge the ratchet.

A solution to this problem is to only store the incremented
ratchet value and the rotated key when the AES-SIV part of the
message was successfully decrypted. Otherwise, the whole Mag-
icPairing message should be considered untrusted and the ratchet
value should stay as it was before.

6.7 L2CAP1: L2CAP Zero-Length
While fuzzing MagicPairing over-the-air, we identified a crash in
the RTKit Bluetooth stack, more specifically, the AirPods 1 and
2. When sending an L2CAP message with the length field set to
zero and no payload, the AirPods crash. As there are no publicly
documented debugging capabilities for theAirPods, it is not possible
to tell whether the Bluetooth thread or the whole operating system
crashes. We observe that the music stops playing, the connected
iPhone reports the AirPods as disconnected, and after a few seconds,
the AirPods play a sound indicating a successful connection.

6.8 L2CAP2: L2CAP Groups
This crash is another NULL pointer dereference, albeit more severe
than the previous ones. It is accessible via both BLE and Classic
Bluetooth and is part of L2CAP Group feature. This is indicated by
logging messages in the crashing function that mention the file
corestack/l2cap/group.c. However, the L2CAP Group feature
is no longer supported since Bluetooth 1.1. We assume the group
reception function has been accidentally left in the code. In the
newest Bluetooth specification, the channel ID 0x0002 is reserved
for connectionless traffic instead of group traffic [7, p. 1035].

Depending on the data that is received, the L2CAP Group handler
tries to find a matching entry in a function table allocated on the
heap. However, this table has only been allocated, not initialized.
Thus, all its entries are zero. When the payload starts with a NULL
byte, the first entry is identified as matching entry. The code then
tries to jump to the function pointer stored in that table entry,
which also is a NULL pointer. However, any control over this table
would immediately result in control over the instruction pointer. In

3The attacker could also send regularMagicPairing AirPod advertisements (Section 4.3),
but they are encrypted and regularly change.

addition to an iPhone 7 on iOS 13.3, we were able to reproduce the
crash on an iPad 2 with iOS 9.3.5 (released on August 25 2016), and
an iPhone 4 with iOS 5.0.1 (released on November 10 2011). While
the crash is not critical per se, it shows how long the iOS Bluetooth
stack has not been tested. As iOS 5 and 9 still had another Bluetooth
stack architecture, the crash happens within BTServer instead of
bluetoothd.

7 CONCLUSION
In this paper, we showed how Apple deals with seamless pairing of
Bluetooth peripherals in their large connected ecosystem. While
MagicPairing is proprietary, its general ideas and techniques can
be integrated into other IoT ecosystems. Furthermore, other Blue-
tooth peripheral vendors could benefit from the MagicPairing pro-
tocol and infrastructure. All Apple needs to do is to provide an API
that lets developers generate and receive an Accessory Key that is
stored in the user’s iCloud account. Vendors could then implement
MagicPairing in their products and benefit from the same security
properties and seamless pairing experience as the AirPods.

Apple’s three different Bluetooth stacks for iOS, macOS, and
RTKit also reflect the variety of Bluetooth implementations out-
side of their ecosystem. Many vendors choose to implement their
own stacks and protocols. This makes efficient testing of Bluetooth
devices challenging, but our over-the-air fuzzing setup based on
InternalBlue can also be useful to test further Bluetooth stacks. As
MagicPairing is a rather simple protocol, over-the-air fuzzing was
sufficient to identify multiple vulnerabilities, despite the lack of
speed and coverage information. However, our iOS-based in-process
fuzzer had better performance in practice.

Overall, Apple keeps their Bluetooth ecosystem rather closed to
third-party vendors. Already using Classic Bluetooth requires them
to apply for MFi. However, this enables an overall smooth user
experience. Bluetooth runs silently in the background most of the
time and manages tasks like AirDrop and Handoff [12, 27]. Since
iOS 13, the Bluetooth icon has been removed from the status bar,
even during audio streaming. Any incentive for disabling Bluetooth
in the Apple ecosystem is missing.

While all of this is great for user experience, we were surprised
by the vulnerabilities uncovered within MagicPairing. We assume
that this protocol never had an extensive code review and was never
fuzzed before integrating it as always-active Bluetooth background
service. We are looking forward to Apple integrating patches for the
vulnerabilities we identified, but also hope that they will elaborate
their other wireless protocols better in the future.

ACKNOWLEDGMENTS
We thank Bianca Mix, Oliver Pöllny, Alexander Heinrich, and Teal
Starsong for proofreading this paper. Moreover, we thank Matthias
Hollick for his feedback and Anna Stichling for the ToothPicker
logo.

This work has been funded by the German Federal Ministry of
Education and Research and the Hessen State Ministry for Higher
Education, Research and the Arts within their joint support of the
National Research Center for Applied Cybersecurity ATHENE, as
well as by the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119
– 236615297.

120

Apple’s Take on Securing Bluetooth Peripherals WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

REFERENCES
[1] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2020. BIAS:

Bluetooth Impersonation AttackS. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy (S&P).

[2] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen. 2019. The
KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation
Of Bluetooth BR/EDR. https://www.usenix.org/conference/usenixsecurity19/
presentation/antonioli. In 28th USENIX Security Symposium (USENIX Security 19).
USENIX Association, Santa Clara, CA, 1047–1061.

[3] Apple. 2020. Bug Reporting—Profiles and Logs. https://developer.apple.com/bug-
reporting/profiles-and-logs/.

[4] Apple. 2020. Developer Documentation – IOKit. https://developer.apple.com/
documentation/iokit.

[5] Apple. 2020. MFi Program. https://developer.apple.com/programs/mfi/.
[6] Eli Biham and Lior Neumann. 2018. Breaking the Bluetooth Pairing: Fixed

Coordinate Invalid Curve Attack. http://www.cs.technion.ac.il/~biham/BT/bt-
fixed-coordinate-invalid-curve-attack.pdf.

[7] Bluetooth SIG. 2020. Bluetooth Core Specification 5.2. https://www.bluetooth.
com/specifications/bluetooth-core-specification.

[8] Nikita Borisov, Ian Goldberg, and Eric A. Brewer. 2004. Off-the-record commu-
nication, or, why not to use PGP. In Proceedings of the 2004 ACM Workshop on
Privacy in the Electronic Society, WPES 2004, Washington, DC, USA, October 28,
2004, Vijay Atluri, Paul F. Syverson, and Sabrina De Capitani di Vimercati (Eds.).
ACM, 77–84. https://doi.org/10.1145/1029179.1029200

[9] Jiska Classen. 2019. All Wireless Communication Stacks are Equally Broken.
[10] Jiska Classen, Daniel Wegemer, Paul Patras, Tom Spink, and Matthias Hollick.

2018. Anatomy of a Vulnerable Fitness Tracking System: Dissecting the Fit-
bit Cloud, App, and Firmware. In PACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (IMWUT).

[11] Dan Harkins. 2008. Synthetic Initialization Vector (SIV) Authenticated Encryption
Using the Advanced Encryption Standard (AES). RFC 5297. RFC Editor. https:
//tools.ietf.org/html/rfc5297

[12] Alexander Heinrich. 2019. Analyzing Apple’s Private Wireless Communication
Protocols with a Focus on Security and Privacy.

[13] Dennis Heinze. 2020. ToothPicker: Enabling Over-the-Air and In-Process Fuzzing
Within Apple’s Bluetooth Ecosystem.

[14] Aki Helin. 2020. radamsa - a general-purpose fuzzer. https://gitlab.com/akihe/
radamsa.

[15] Konstantin Hypponen and Keijo MJ Haataja. 2007. “Nino” Man-in-the-Middle At-
tack on Bluetooth Secure Simple Sairing. In 3rd IEEE/IFIP International Conference
in Central Asia on Internet. IEEE.

[16] Kim Jong Cracks. 2020. checkra1n—iPhone 5s – iPhone X, iOS 12.3 and up.
https://checkra.in/.

[17] Jonathan Levin. 2019. New OSX Book, Volume II, *iOS Internals::Kernel Mode.
20–22 pages. http://newosxbook.com

[18] Dennis Mantz. 2019. Frida-based general purpose fuzzer. https://github.com/
demantz/frizzer.

[19] Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias Hollick. 2019. Inter-
nalBlue - Bluetooth Binary Patching and Experimentation Framework. In The
17th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys ’19). https://doi.org/10.1145/3307334.3326089

[20] Jeremy Martin, Douglas Alpuche, Kristina Bodeman, Lamont Brown, Ellis Fenske,
Lucas Foppe, Travis Mayberry, Erik Rye, Brandon Sipes, and Sam Teplov. 2019.
Handoff All Your Privacy–A Review of Apple’s Bluetooth Low Energy Continuity
Protocol. Proceedings on Privacy Enhancing Technologies 2019, 4 (2019), 34–53.

[21] Trevor Perrin and Moxie Marlinspike. 2016. The Double Ratchet Algorithm.
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

[22] Ole André V. Ravnås. 2020. Frida - A world-class dynamic instrumentation
framework. https://frida.re/.

[23] Don Reisinger. 2019. Apple’s AirPods Business Is Bigger Than You Think. https:
//fortune.com/2019/08/06/apple-airpods-business/.

[24] Phillip Rogaway and Thomas Shrimpton. 2006. A Provable-Security Treatment
of the Key-Wrap Problem. In Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings (Lecture
Notes in Computer Science), Serge Vaudenay (Ed.), Vol. 4004. Springer, 373–390.
https://doi.org/10.1007/11761679_23

[25] Mike Ryan. 2013. Bluetooth: With Low Energy Comes Low Security. In Presented
as part of the 7th USENIX Workshop on Offensive Technologies. https://www.
usenix.org/system/files/conference/woot13/woot13-ryan.pdf

[26] Shaked, Yaniv andWool, Avishai. 2005. Cracking the Bluetooth PIN. In Proceedings
of the 3rd International Conference on Mobile Systems, Applications, and Services.
ACM.

[27] Milan Stute, Sashank Narain, Alex Mariotto, Alexander Heinrich, David Kre-
itschmann, Guevara Noubir, and Matthias Hollick. 2019. A Billion Open
Interfaces for Eve and Mallory: MitM, DoS, and Tracking Attacks on iOS
and macOS Through Apple Wireless Direct Link. https://www.usenix.org/
conference/usenixsecurity19/presentation/stute. In 28th USENIX Security Sympo-
sium (USENIX Security 19). USENIX Association, Santa Clara, CA, 37–54.

[28] Davide Toldo. 2019. Analyzing the macOS Bluetooth Stack.
[29] Maximilian von Tschirschnitz, Ludwig Peuckert, Fabian Franzen, and Jens

Grossklags. 2020. Method Confusion Attack on Bluetooth Pairing. In Under
submission.

121

https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://developer.apple.com/bug-reporting/profiles-and-logs/
https://developer.apple.com/bug-reporting/profiles-and-logs/
https://developer.apple.com/documentation/iokit
https://developer.apple.com/documentation/iokit
https://developer.apple.com/programs/mfi/
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
http://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://doi.org/10.1145/1029179.1029200
https://tools.ietf.org/html/rfc5297
https://tools.ietf.org/html/rfc5297
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://checkra.in/
http://newosxbook.com
https://github.com/demantz/frizzer
https://github.com/demantz/frizzer
https://doi.org/10.1145/3307334.3326089
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://frida.re/
https://fortune.com/2019/08/06/apple-airpods-business/
https://fortune.com/2019/08/06/apple-airpods-business/
https://doi.org/10.1007/11761679_23
https://www.usenix.org/system/files/conference/woot13/woot13-ryan.pdf
https://www.usenix.org/system/files/conference/woot13/woot13-ryan.pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/stute
https://www.usenix.org/conference/usenixsecurity19/presentation/stute

	Abstract
	1 Introduction
	2 The MagicPairing Protocol
	2.1 Phase 1: Key Creation and Distribution
	2.2 Phase 2: Hint
	2.3 Phase 3: Ratcheting
	2.4 Phase 4: AES-SIV
	2.5 Phase 5: Link Key Derivation

	3 Security Properties
	4 Implementation Details
	4.1 Apple's Bluetooth Stacks
	4.2 MagicPairing Messages
	4.3 MagicPairing AirPods Advertisements
	4.4 Code Quality

	5 Fuzzing with ToothPicker
	5.1 Over-the-Air Fuzzing
	5.2 In-Process Fuzzing
	5.3 Setup Overview
	5.4 Attaching the In-Process Fuzzer

	6 Vulnerabilities in the MagicPairing Implementations
	6.1 Null Pointer Dereferences
	6.2 MP1: iOS Ratcheting
	6.3 MP2–5: macOS/iOS Hint and Ratcheting
	6.4 MP6: Ratcheting Abort
	6.5 MP7: Ratcheting Loop
	6.6 MP8: Pairing Lockout
	6.7 L2CAP1: L2CAP Zero-Length
	6.8 L2CAP2: L2CAP Groups

	7 Conclusion
	Acknowledgments
	References

