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ABSTRACT
Access to mobile wireless networks has become critical for day-

to-day life. However, it also inherently requires that a user’s geo-

graphic location is continuously tracked by the service provider.

It is challenging to maintain location privacy, especially from the

provider itself. To do so, a user can switch through a series of iden-

tifiers, and even go offline between each one, though it sacrifices

utility. This strategy can make it difficult for an adversary to per-

form location profiling and trajectory linking attacks that match

observed behavior to a known user.

In this paper, we model and quantify the trade-off between utility

and location privacy. We quantify the privacy available to a com-

munity of users that are provided wireless service by an untrusted

provider. We first formalize two important user traits that derive

from their geographic behavior: predictability and mixing, which
underpin the attainable privacy and utility against both profiling
and trajectory linking attacks. Second, we study the prevalence of

these traits in two real-world datasets with user mobility. Finally,

we simulate and evaluate the efficacy of a model protocol, which

we call Zipphone, in a real-world community of hundreds of users

protecting themselves from their ISP. We demonstrate that users

can improve their privacy by up to 45% by abstaining minimally

(e.g., by sacrificing at most 5% of their uptime). We discuss how a

privacy-preserving protocol similar to our model can be deployed

in a modern cellular network.

CCS CONCEPTS
• Security andprivacy→Usability in security andprivacy;

Pseudonymity, anonymity and untraceability; Mobile and wireless
security.
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1 INTRODUCTION
When mobile users connect to the Internet, they authenticate to a

cell tower, allowing service providers such as Verizon and AT&T

to store a log of the time, radio tower, and user identity [69]. As

providers have advanced towards the current fifth generation of

cellular networks, the density of towers has grown, allowing these

logs to capture users’ locationwith increasing precision.Many users

are persistently connected, apprising providers of their location all

day. Connecting to a large private Wi-Fi network provides similar

information to its administrators. And some ISPs offer cable, cellular,

and Wi-Fi hotspots as a unified package.

While fixed user identifiers are useful in supporting backend

services such as postpaid billing, wireless providers’ misuse of

identifier data is increasingly leading to privacy concerns [14].

Users concerned about their location privacy [10] may use existing

tools that allow protection only at the network and application

levels. For example, VPNs and Tor [21] mask the IP address of a

user from a remote server, and hide the remote server location from

the service provider. Additionally, access control features allow

users to hide or reduce location information sent to location-based

services. No such tools exist for protection of geographic locations
from local service providers — but that does not mean that users are

complacent about their ISPs having knowledge of their locations.

A recent class action lawsuit demonstrates that mobile users do

not want cellular service providers to sell their historic movement

records to third parties, such as location aggregators [14].
To gain privacy, a user 𝑢 may attempt to anonymously use a

wireless service by obtaining a mobile identity 𝑖1 without revealing

personal information. The service would provide data connection,

while phone calls would be signalled over a VPN using Voice over

IP (VoIP). The user may switch to a new pseudonymous identity, 𝑖2,

before the first is compromised, eventually going through a series

of identities over time [12]. However, two primary attacks prevent

the user from having location privacy, as illustrated in Figure 1.

(1) In location profiling, an attacker identifies one or more of the

identities 𝑖1, 𝑖2, . . . as user 𝑢 by exploiting the uniqueness of

the locations the user is known to regularly visit.

(2) In trajectory linking, an attacker infers that activity by 𝑖1
is linked to activity by 𝑖2 despite the change in identifier.

The union of locations can enhance the success of location

profiling.

There is a fundamental location privacy cost to connecting to

a mobile service. To reduce the success of these attacks without

modifying their behaviors, users can (i) switch identifies frequently,

and (ii) remain offline for a period of time between connection

sessions, which both reduce user utility. In this paper, we model

and quantify this trade-off between utility and location privacy. We
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Figure 1: Left: Diverging paths that are regularly taken
by two users. During training, an attacker would encode
each labelled transition into a transition matrix for loca-
tion profiling. Right: Separate, unlabelled activity where an
unknown user reconnects using a new pseudonym at every
tower. If the anonymous user does not successfully mix at
these towers (i.e. does not remain offline long enough), the
attacker can link the trajectories together and match the
concatenated trace to User B’s profile.

define utility as the proportion of time the user may stay connected

throughout the day while behaving in a privacy preserving manner.

Our work complements existing research in location privacy. Lo-

cation profiling has been long known to be a problem [19]; attacks

typically classify either the set of locations cells visited by an unla-

belled user during a time period, or the list of transitions between

locations [51]. Trajectory privacy studies, including a body of work

in VANETs [35, 48], generally link disconnected traces using Eu-

clidean information. Defenses against these attacks generally utilize

a mixing strategy or, more recently, differential privacy. While the

latter can separately protect against either location profiling or

trajectory linking [24, 65, 66], it requires the cooperation of ISPs. In

contrast, our work assumes the ISP is an adversary, and we evaluate

robustness against attackers using both profiling and linking.

For our analysis, we model defensive strategies as a protocol

we call Zipphone, and we define specific ISP-based attacker algo-

rithms as well. We assume a set of users employ Zipphone, using

ephemeral identifiers and go offline to prevent trajectory linking.

Notably, users do not need to coordinate mixing; naturally occur-

ring mix zones are enough to significantly reduce linking success.

Our attacker model looks to historical transition probabilities to

model linking, rather than Euclidean distance. Using two real-world

datasets [23, 52], we quantify the path predictability and mixing
degree of user activity. With the same data, we demonstrate how a

small community can reduce an attacker’s re-identification accu-

racy substantially while sacrificing a limited amount of utility.

Contributions. We make the following contributions.

• We formalize two important user traits that derive from their geo-

graphic behavior: predictability and mixing, which underpin the

attainable privacy and utility against both profiling and linking.

To our knowledge, prior work has not analyzed the combination

of the profiling and trajectory linking attacks.

• We analyze two real-world datasets [23, 52] and quantify the

predictability and mixing behavior of mobile users. While these

datasets are relatively small (100–150 active users), they provide

a realistic look at the behavioral properties of a set of users.

• We use the same two datasets to quantify attacker accuracy in

the re-identification of a community of users running Zipphone.

Predictable, mixing users are identifiable only 24% of the time if

they renew their identifiers every ten minutes. At the same time,

users with permanent identifiers are susceptible to attacks in 69%.

We quantify the trade off between the frequency of identifier

renewals and user utility. We find that renewals as often as even

one hour offer little protection.

• Finally, we discuss how our model Zipphone protocol can be

employed in emerging mobile cellular networks without explicit

cooperation of the provider.

We additionally estimate the incurred user-side overhead from

Zipphone in terms of time and battery consumption for 3G and 4G

networks. Specifically, we measured power consumption during

network association and disassociation, and we demonstrate that

a user may incur at most 1% battery overhead per day regardless

of network technology or desired privacy if Zipphone were used.

We detail the challenges that such deployment would face.

In what follows, we first summarize related work in Section 2.

We then present our attacker model and corresponding attacker-

defender dynamics in Section 3. We evaluate Zipphone’s privacy

preserving performance in Section 4. We then discuss avenues for

employing Zipphone in emerging mobile cellular networks and

quantify the user overhead in Section 5. We discuss limitations and

ethical implications in Section 6 and conclude in Section 7.

2 RELATED WORK
Our study is related to a broader category of prior work on location

privacy. Most prior work assumes the service provider is trusted and

in fact responsible for user privacy. Prior approaches have a variety

of goals, including: (i) properly anonymizing mobility datasets

before public release; (ii) adding privacy for users of locations based
services; and (iii) increasing location privacy for mobile device users

from third-party attackers but not the service provider itself. In

contrast to these works, our goal is to provide mobile users location

privacy from the wireless provider itself. This presents a unique

challenge: the user is responsible for her own privacy, and the only

control she has over this is whether to remain connected to the

service at any moment in time.

In our preliminary work [59], we examined the efficacy of

ephemeral IMSIs. This paper significantly expands upon that work

by: including trajectory linking as an attack; including user util-

ity, off time, and cool down in the renewal algorithm, which is

more practical and also thwarts trajectory linking; quantifying

predictability and mixing of users; using a new data set; and quan-

tifying overhead.

Location privacy with provider cooperation. Many studies

focus on enlisting a trusted carrier to protect against a third party

attacker [29, 32, 33, 46]. Reed et al. [56] propose privacy from the

carrier using onion routing, but does not consider the direct con-

nection that must be made to a tower. Federrath et al. [28] propose

a similar scheme that prevents linkability of calls between two par-

ties but omit critical details regarding authentication to the carrier.

Fatemi et al. [27] propose an anonymous scheme for UMTS using

identity-based encryption, but unlike our approach, their scheme

involves the carrier in the cryptographic exchange; they enumerate
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the vulnerabilities of similar works [41, 54, 67, 70]. Kesdogan et

al. [42] proposes using a trusted third party to create pseudonyms

for GSM users, but also routes all calls through that provider, which

allows it to characterize the calling pattern and infer the caller.

User-driven trajectory privacy. Mix zones [12, 30] can be em-

ployed by a user against a provider attacker when the network

service provider is non-cooperative. While the concept of mix zones

is fairly old, it remains the only available option for users who want

to hide their own location privacy from a service provider. Work in

VANETs also uses mix zones to protect vehicle trajectory [25, 35, 48].

Given that their focus is on trajectory, these studies do not consider

location profiling. Other work involves the introduction of false

information [44, 58]. Few studies use this concept to protect the

user from an omnipresent network attacker. Chan [15] focuses on

call metadata privacy, rather than location privacy.

User-driven profiling privacy. Work that increases the privacy

of location-based services (LBS) [38, 53, 62, 63] generally add noise

to location queries. These works are not viable or applicable against

an untrusted service provider: a user cannot manipulate which

tower they connect to, and the provider knows the physical loca-

tions of the towers serving users.

Dataset protection. Works that aim to prevent leaks in personally

identifiable information in shared or publicly released datasets [68]

primarily rely on obfuscation. They also strive to prevent trajectory

recovery [34, 60]. Older work on deanonymization of mobile users’

traces assumes the user’s pseudonym is unchanged throughout the

trace. But a small amount of external information, such as the per-

son’s home or work address [40], can deanonymize an obfuscated

trace [11, 12, 31, 45, 49, 51] given a consistent identifier. Zang and

Bolot [69] show that suitably anonymizing a trace of 25 million

cellular users across 50 states (30 billion records total) requires only

that users have the same pseudonym for no longer than a day. A

day’s duration is unsuitable for Zang and Bolot’s goal of support-

ing researchers that wish to characterize the behaviour of users

over time (while maintaining their privacy). On the other hand, the

result is promising for users seeking privacy, who might be able to

change their pseudonyms more frequently than once per day.

Differential privacy. More recently, differential privacy ap-

proaches [22, 50] are used to add noise to datasets while preserving

its aggregate characteristics. Palamidessi et al. [9] introduce geo-

indistinguishability, and ElSalmouny & Gambs [24] further discuss

(𝐷, 𝜖)-location privacy. Xiong et al. [65, 66] formalize situations

where location queries can be temporally correlated and linked.

These methods all assume the service provider is trusted and are,

thus, not applicable to our problem setting.

Outside threats. Several studies protect against third party at-

tackers and vulnerabilities in 3GPP implementations [36, 39]. Khan

et al. [43] provide a cryptographic mechanism to generate LTE

pseudonyms and prevent third-party attackers or IMSI catchers

from linking users.

In comparison to related work, we differ in that we do not trust

the wireless service to ensure the user’s privacy, and we assume

in our analysis that the adversary is attempting to link together

traces. Our evaluations are based on traces of real users [23, 52],

which allows us to quantify the periodicity of identifier changes in

the context of modern cellular infrastructure.

3 ATTACKER AND DEFENDER ALGORITHMS
Our primary goal is to quantify the privacy-utility trade-offs present

in systems that provide geographic anonymity from mobile ISPs.

To do so, first we instantiate a specific protocol for users and pro-

vide well-defined attacker algorithms. The protocol, Zipphone, is

based on mechanisms available to the user only; i.e., the ISP is not

cooperative, an assumption not shared by many location privacy

systems. In short, users can control only their active identity (i.e.

pseudonym) and whether or not they are connected; providers

attempt to link the activities of identities to existing user profiles.

3.1 Problem Statement
Zipphone users seek to use the network, but not have their real

identities associated with mobility recorded in traces. Upon joining

the network, the user 𝑢 is assigned a pseudonym 𝑖 . The pseudonym

lets the user maintain a connection session for some period of time.

The user attaches to a sequence of towers as it moves according

to signal strength and the corresponding handoff procedures. By

registering as identity 𝑖 and then moving, the user provides to the

ISP a trace: (𝑖, (𝑠1, 𝑠2, . . .)), where each value of 𝑠 indicates a specific

wireless transceiver and a timestamp. The provider knows the

locations of the transceivers and can, thus, trace a user’s mobility.

It is not the goal of the user to hide that they are using Zipphone.

The goal of the attacker is to infer and label their identities from

the traces. The attacker is a wireless provider such as a Mobile Net-

work Operator (MNO) that already has a history of traces for each

Zipphone user. The attacker then tries to determinewhich user from

a set 𝑢1, 𝑢2, 𝑢3, . . . is the one that created the trace (𝑖, (𝑠1, 𝑠2, . . .))
based on a classifier trained from the known history, where 𝑖 repre-

sents an IMSI. Since longer traces are easier to classify, users must

regularly renew their identity; programmable solutions such as an

eSIM could facilitate this process. Section 5 provides a discussion on

how this may be implemented in a modern cellular infrastructure.

In Section 4.3, we demonstrate that longer traces are easier to

identify and link with other traces; users should regularly renew

their identifier in order to keep these traces short. We assume the

user does not perturb their own movement patterns. Therefore

important parameters are (i) the identity renewal frequency, and

(ii) the user’s offline duration.When the renewal frequency is higher,

privacy also increases; but each identity renewal incurs an offline

period and increases power usage. Longer offline durations improve

privacy but reduce utility. We assume all such parameters are public

and known to the attacker.

3.2 Attacker Model
The attacker’s goal is to determine the identify 𝑢 of a trace

(𝑖, (𝑠1, 𝑠2, . . .)) of consecutive tower connections. We assume the

attacker (i) has all traces of all Zipphone devices, and (ii) has la-
belled/identified traces of historic movement for all Zipphone users,

for training a classifier; in other words, the attacker is a service

provider such as a mobile network operator. The attacker performs

trajectory linking, which patches together separate traces if a classi-

fier predicts they are from the same user.
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Algorithm 1 User identifier renewal strategy (Zipphone)

1: utility←Minimum utility between 0.0 and 1.0

2: max_off_time← Maximum time offline during renewal

3: while device is online do
4: wait(until device moves outside range of tower)

5: disconnect

6: off_time← uniform(0,max_off_time)

7: wait(off_time)

8: connect ⊲ connect with new identifier

9: cooldown_time← utility × off_time

10: wait(cooldown_time)

We assume that all Zipphone users are of equal interest to the

attacker, and that it uses only normal cellular infrastructure to

attack. For example, we assume that the attacker does not install

cameras on towers to identify users via facial recognition, nor

would they follow a particular user by car. It does not make sense

for the attacker to set up an IMSI catcher[17] since they already own

the entire real infrastructure. We assume that location accuracy

is on the level of cell tower; while features such as RSSI or TDOA

could locate wireless devices with more precision, devices could in

turn artificially slightly reduce performance as a defense, effects of

which are outside the scope of this paper.

We assume that the attacker gains no other information from the

users; in mobile phones, information such as IMEI, device model, or

OS signatures, are easily turned off via OS settings. In practice, such

features would assist the attacker (see [16]), but are not the focus

of this paper as they are more easily obfuscated or falsified than

real geographical movement. For example, IMEIs, which are akin

to a MAC address, can be modified by the user since she controls

the handset hardware (e.g., SilentCircle’s blackphone [6]). Since

users are likely identifiable by the unique set of outgoing calls they

make, they should make calls via VoIP through an anonymizing

proxy or circuit instead of using a conventional phone connection.

Encryption of the VoIP stream can thwart carrier eavesdropping.

Stronger protection is available by using VoIP over Tor [8].

A user tries tomaximize their utility (i.e. uptime)while remaining

private; thus, their reidentifiability depends on their predictability

and mixing behaviour. A user who visits vastly different location

than her peers could not mix easily; her activity could be easily

linked and profiled. A user who is not predictable could not be

easily identified regardless of mixing behaviour.

3.3 Attacker-defender dynamics
3.3.1 User strategy. Algorithm 1 defines the Zipphone user algo-

rithm. As described in the previous section, Zipphone users renew

their identifiers only when three conditions are met: (i) they are

in the process of switching towers, and (ii) the renewal cool down
period (in seconds) has expired; (iii) they are not actively using

the phone. To renew, users first detach, then stay offline, and then

reattach with a new profile. The offline time is selected uniformly

at random from amaximum offline period. It must be random, other-

wise linking traces would be trivial. The cool down period ensures

that the loss of utility remains at a minimum for the user. This

aggressive renewal strategy is frequent enough to allow the natural

Algorithm 2 Location profiling algorithm

1: function profile_user(𝑢) ⊲ 𝑢 is the user index

2: 𝑇𝑢
0,𝑞 ←

𝐶𝑜𝑢𝑛𝑡 (𝑞)∑
𝑞′∈C𝐶𝑜𝑢𝑛𝑡 (𝑞′) ⊲ The prior for user’s initial location

3: for all 𝑝 → 𝑞 ∈ transitions(𝑢) do ⊲ 𝑝 → 𝑞 denotes a

transition

4: 𝑇𝑢
𝑝,𝑞 ←

𝐶𝑜𝑢𝑛𝑡 (𝑝→𝑞)∑
𝑞′∈C𝐶𝑜𝑢𝑛𝑡 (𝑝→𝑞′) ⊲ This transition matrix may be

sparse

5: return𝑇𝑢

6: function classify_user(𝒔) ⊲ 𝒔 = (𝑠0, 𝑠1 . . . ), 𝑠 ∈ C is a sequence

of tower IDs

7: return argmax𝑢 𝑇
𝑢
0,𝑠0

∏𝑛−2
𝑖=0 𝑇

𝑢
𝑠𝑖 ,𝑠𝑖+1

formation of mix zones, and does not require users to coordinate

times or places to mix.

3.3.2 Attacker strategies. The attacker’s goal is to take a times-

tamped sequence of visited towers and infer the user, given a train-

ing set. We first describe a location profiling classifier that could
be employed by the attacker. We then define a trajectory linking
classifier to aid the attacker in trajectory linking.

Location profiling algorithm. Our classifier (Algorithm 2) is a

Markov model that chooses the most likely user for a sequence of

tower attachments; the classifier is adapted from Mulder et al. [51].

This algorithm is well suited to identify users of a device that

has its location constantly logged throughout the day. With this

classifier, the attacker labels a sequence of locations with the most

likely user, based on all possible users’ transition histories. In our

model, vector 𝒔 is a sequence of locations in the location set C:

𝒔 = (𝑠0, 𝑠1, 𝑠2 . . . ), 𝑠 ∈ C. In the steps below, the attacker identifies

the most probable user given each candidate user’s history, 𝑢 =

argmax𝑢 𝑝 (𝑢 |𝒔).
We determine the most likely user, given a sequence of locations.

Pr(𝑢 |𝒔) = Pr(𝑢 |𝑠0, 𝑠1, 𝑠2, . . . )
We apply Bayes’ rule, and consider the likelihood of a sequence

given a user.

Pr(𝑢 |𝒔) = Pr(𝑠0, 𝑠1, 𝑠2, . . . |𝑢) Pr(𝑢)
Pr(𝑠0, 𝑠1, 𝑠2, . . . )

We assume that each user is equally likely.

Pr(𝑢 |𝒔) ∝ Pr(𝑠0, 𝑠1, 𝑠2, . . . |𝑢)
= Pr(𝑠0 |𝑢) · Pr(𝑠1 |𝑢, 𝑠0) · Pr(𝑠2 |𝑢, 𝑠0, 𝑠1)·
Pr(𝑠3 |𝑢, 𝑠0, 𝑠1, 𝑠2) . . .

Each transition is independent per the Markov assumption.

= Pr(𝑠0 |𝑢)
𝑛∏
𝑖=0

Pr(𝑠𝑖+1 |𝑠𝑖 , 𝑢)

We determine the most likely user 𝑢.

𝑢 = argmax

𝑢
Pr(𝑠0 |𝑢)

𝑛∏
𝑖=0

Pr(𝑠𝑖+1 |𝑠𝑖 , 𝑢)

The attacker computes a transition matrix 𝑇 for each user in the

training data by counting the historical transitions. The probability

of the first location in the sequence Pr(𝑠0 |𝑢) is computed from the

overall number of a user’s occurrence at a location. The attacker

does not consider the probability of a trace ending at a certain

location, since a sequence can end for arbitrary reasons.
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Algorithm 3 Linking algorithm

1: max_t←Maximum time offline during renewal

2: function train_link_transitions

3: for all 𝑝
max_t−−−−→ 𝑞 do ⊲ all locations 𝑞 seen within max_t of 𝑝

4: 𝑇 l

𝑝,𝑞 ←
𝐶𝑜𝑢𝑛𝑡 (𝑝

max_t−−−−→𝑞)∑
𝑞′∈C𝐶𝑜𝑢𝑛𝑡 (𝑝

max_t−−−−→𝑞′)
⊲ transition matrix used for

linking

5: return𝑇 l

6: function classify_user_with_trajectory(𝒔)
7: while link_count<max_links do
8: candidates←find_candidates(𝒔) ⊲ traces ≤ max_off_time

after 𝒔 ends
9: if empty(candidates) then
10: break

11: 𝒔′ ← argmax𝒔′ 𝑇
l

𝒔𝑛 ,𝒔′
0

⊲ ∀𝑠′ ∈ candidates
12: 𝒔 ← concatenate(𝒔,𝒔′)

13: return classify_user(𝒔)

The success of such an attack depends on two factors: the num-

ber of users in the anonymous community, and the similarity of

the user’s location transitions to the other users. If there is one

registered cell phone user on the network, then linking the user

to location is trivial; however, if there are many users who behave

similarly, it would be difficult for the attacker to tell the user apart.

We also designed and tested a classifier that exploited diurnal

features of user mobility, however, it did not perform significantly

better than the above outlined algorithm. Thus, in the remainder

of the paper, our attacker model does not employ diurnal features.

Trajectory linking algorithm. In Algorithm 3, we extend Algo-

rithm 2 to model the attacker’s ability to do trajectory linking. The

attacker uses the transitions of all users and builds a semi-Markov

linking transition matrix. This matrix is similar to the one described

in Algorithm 3, except that it is built by considering all subsequent

locations within a given offline time, rather than only the next

immediate location. This strategy ensures that unreasonable tran-

sitions do not confuse the classifier, and any unseen transitions

occurring within that time frame are accounted for.

Our trajectory linking first searches for candidate traces that start
within the maximum offline time. If a number of traces start within

the offline time, the targets have a chance to mix, and the attacker

must infer which trace comes next by using the semi-Markov tran-

sition matrix. This process is repeated until the trace is of sufficient

length for classification, or there are no more candidates.

4 EVALUATION
In this section, we determine the parameters in our model and

evaluate the algorithms using two real-world datasets that con-

tain geotagged user data coupled with tower attachment logs:

PhoneLab [52] and RealityMining [23]. First, we characterize the
amount of predictability and mixing behaviour exhibited by users

in these datasets. We demonstrate that both characteristics are re-

lated to the success of the attacker’s accuracy. Next, we simulate

a deployment of Zipphone amongst a community of users, and

determine their reidentifiability with respect to sacrificed utility.

4.1 Datasets
Both datasets were collected by university affiliates who carried

phones instrumented to log network attachment and user activity.

Type Trait Privacy
hypothesis PhoneLab Reality

MiningPredictable Mixing

P/M Yes Yes Moderate-Low 18% 18%

P/nM Yes No Low 26% 30%

nP/M No Yes High 30% 24%

nP/nM No No Moderate 26% 29%

Table 1: User typology and their proportions in our target
datasets, with a hypothesis about the amount of privacy a
user could attain from Zipphone.

(1) PhoneLab [52] is an Android testbed comprising 593 phones

distributed to students at the University of Buffalo campus.

As a part of this testbed, users contributed geotagged traces

of their cellular network associations.We use 24months from

January 2015 to January 2017 of cellular network association

traces from PhoneLab to assess the privacy preservation

potential of Zipphone.

(2) RealityMining [23] is a dataset released by MIT that tracks

a group of 100 mobile phone users across various contexts.

Similar to PhoneLab, RealityMining contains geotagged net-
work association information. For our analysis, we leverage

12 months of RealityMining data from July 2004 to July 2005.

We are unaware of other public datasets that could be used to

analyze our algorithms. Larger datasets [13, 61] do not contain

sufficient information about users’ association with towers and,

thus, do not cater to our analyses. (We filed IRB protocol 2017-3900

as part of this project, and it was approved as exempt.)

4.2 Behaviour that affects attacker accuracy
We begin by characterizing user behaviour. Intuitively, there are

two behavioural traits that affect mobile users’ privacy: (i) Pre-
dictability, or to what extent users travel over fixed routes; and

(ii) Mixing behaviour, or how likely are users to visit popular loca-

tions that see a large volume of other Zipphone users. To highlight

the effect of user behaviour on privacy, we categorized PhoneLab
and RealityMining users post hoc into four groups:

• predictable (P) or unpredictable (nP); and

• mixing (M) or not mixing (nM).

The four resulting user types are described in Table 1, where we

also set forth a hypothesis of how user behaviour would affect

privacy. We verify and confirm these hypothesis in our evaluation

(Section 4).

Predictability We calculate the user predictability in terms of the

similarity of the set of cellphone towers they visited during the

testing and training period. For each user, let 𝐶𝑝𝑟𝑒 be the set of

towers visited during the training phase and 𝐶𝑝𝑜𝑠𝑡 be the set of

towers visited in the testing phase. We express the predictability in

terms of a user’s Jaccard similarity score between 𝐶𝑝𝑟𝑒 and 𝐶𝑝𝑜𝑠𝑡 ,

defined as

𝐽𝐶 =
𝐶𝑝𝑟𝑒 ∩𝐶𝑝𝑜𝑠𝑡
𝐶𝑝𝑟𝑒 ∪𝐶𝑝𝑜𝑠𝑡

, (1)

where 0 ≤ 𝐽𝐶 ≤ 1. 𝐽𝐶 = 0 when the sets of visited towers in

testing and training are completely disjoint, while 𝐽𝐶 = 1 means

that the sets of visited towers in testing and training are the same.

Intuitively, a higher 𝐽𝐶 means a more predictable trajectory.
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Figure 2: Top: User predictability versus attacker accuracy,
showing that attacker accuracy is near zero with low pre-
dictability. Bottom: User mixing versus attacker accuracy,
showing thatmedian accuracy falls to zero as usermixing in-
creases. The plots were computed from the PhoneLab dataset.
The presented results are for amaximumoffline timeperiod
of 30 seconds and a set utility of 95%. Utility and accuracy
metrics are discussed in detail in Section 4.3.

Figure 2 (top) presents the attacker’s accuracy (i.e., the proba-

bility that a user would be identified) as a function of the users’

Jaccard score in the PhoneLab dataset. We note that the trends

and respective thresholds are similar for the RealityMining dataset

and omit these results due to space limitations. For this setup, 91%

of users fall within the 0.0–0.4 Jaccard score range. Users with a

Jaccard score below 0.1 are less identifiable. Using this analysis

of our test dataset, we set the Jaccard score to 0.1 as a cut off to

differentiate between predictable users (such with 𝐽𝐶 > 0.1) and

unpredictable users (such with 𝐽𝐶 ≤ 0.1).

Mixing behaviour We establish a mixing scoreMC as a met-

ric that evaluates a user’s likelihood to mix with other Zipphone

users. Intuitively, the higher the mixing score, the more efficient ID

switching will be and the harder it will be for the adversary to evade

a user’s privacy. We calculateMC for each individual user. Let 𝑡𝑘
𝑖

be the duration of time a user 𝑖 ∈ (1, 𝑁 ) spends at tower 𝑘 ∈ (1, 𝐾).
During the period 𝑡𝑘

𝑖
, other users 𝑗 ∈ (1, 𝑁 ′), 𝑗 ≠ 𝑖, 𝑁 ′ ⊂ 𝑁 , may

arrive and depart from tower 𝑘 . Let 𝜏𝑘
𝑖 𝑗
be the time of user 𝑗 ’s arrival

or departure. Intuitively, 𝑡𝑘
𝑖
and 𝜏𝑘

𝑖 𝑗
define the temporal granularity

of tower mobility and Zipphone user encounter events, respectively,

from the perspective of a single user 𝑖 . Let 𝐶 (𝜏𝑘
𝑖 𝑗
) be the number of

users in user 𝑖’s vicinity at time 𝜏𝑘
𝑖 𝑗
. We define the mixing score as:

MC =

𝐾∑
𝑘=1

𝑁 ′∑
𝑗=1

𝐶 (𝜏𝑘
𝑖 𝑗
)

𝜏𝑘
𝑖 𝑗
− 𝜏𝑘

𝑖 ( 𝑗−1)
(2)

Figure 2 (bottom) presents the attacker’s accuracy as a function of

the users’ mixing score in the PhoneLab dataset. The trends and

respective thresholds are similar for the RealityMining dataset. The
attacker’s accuracy deteriorates as the users’ mixing score increases.

Based on this analysis, we set a mixing score of 4 as the cutoff to

determine whether a user is mixing or not mixing, i.e. users with

MC ≤ 4 are not mixing and these withMC > 4 are mixing.

User typology in our datasets. As detailed earlier, we differenti-

ate between four types of users based on their predictability and

mixing behaviour. Using the presented analysis in Figure 2, we set

a Jaccard similarity threshold of 0.1 and mixing score threshold of

4. We note that these thresholds are solely used to establish the

user topology in the following evaluation and do not play a role

in the profile classification carried out by the attacker. Figure 1

presents the amount of users that fall in each user type category.

We see a relatively even user representation across all categories.

We use these user types and the corresponding user populations in

all results presented in the evaluation of Zipphone (Section 4.3).

4.3 Results
To determine the affect of Zipphone on the utility and privacy

of users, we simulated the protocol using the PhoneLab and

RealityMining datasets. In these simulations, the attacker uses the

inference algorithms outlined in Section 3.3.2 to develop a location

profile for each user. We split the data up into several sets of three

months; training was done on the first two months, and testing was

done on the third month.

4.3.1 Utility-privacy trade-off. We evaluated the utility-privacy

tension with regard to the four user types. We quantify privacy

gained in terms of reduced attacker accuracy. We measured loss

of utility in terms of time spent offline during the testing period.

Figure 3 displays the privacy gained by each user group during the

one-month testing periods.

Users gained significant privacy from sacrificing 5% utility, on

average remaining online for 9.5 minutes, and going offline for

30 seconds. In particular, Type P/M (predictable but mixing users)

gained 45% in the PhoneLab dataset, and 49% in the RealityMining
dataset. Interestingly, Types nP/M and P/nM also show a similar

trend: Type nP/M benefits from having the divided traces be less

predictable, and for Type P/nM any small amount of predictability is

reduced to none. Type nP/nM does not mix, and enjoys uniformly

high privacy because they are unpredictable. Users were more

private in general in the PhoneLab, since it represented a larger

community of users, making mixing easier for the user, and user

inference more difficult for the attacker.

4.3.2 Trace length and location profiling. The main driver of at-

tacker accuracy is trace length. Longer traces contain more informa-

tion, allowing more accurate reidentification. In these experiments,

the attacker tries to identify an independent trace of varying length,

increasing from one second to four weeks. Figure 4 shows the result.
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Figure 3: Top: PhoneLab. Bottom: RealityMining. In both
datasets, predictable but mixing users (Type P/M) gain the
most from using Zipphone. Ten test traces were evaluated
per user, and accuracy is represented as a mean of the pro-
portion of successful reidentifications per user. Error bars
represent a 95% confidence interval.

The longer the trace, the more identifiable (and thus less private)

an individual is. Users who exhibit more predictable behaviour have

less privacy; generally, they benefit from traces that are at most one

hour long. In other words, predictable users should change their

identifier at least once per hour while in motion. Those who travel

to unique locations as compared to others benefit significantly less

from the shorter trace. This result highlights the benefit of Zipphone.

Users should change their identifiers more than once per hour, and

this system obviates the need to physically change an identifier,

and handles this process automatically. While a temporary SIM

device may grant some measure of privacy, a system that renews a

user’s identifier a lot more quickly can be a lot more effective.

4.3.3 Compromises in utility. While users may renew identifiers by

prearranging mixing strategies with other users, such coordination

is impractical. A frequent enough renewal strategy and long enough

renewal times allow mix-zones to naturally form, which enables

users tomixwithout any coordination. In Figure 5 (top), we examine

the amount of time a user should remain offline. The frequency of

renewal is informed by the utility desired, which we set at 95%.

For users to gain privacy during identifier renewal, they must

remain offline long enough to mix with other users. Additionally,

users must not have a fixed offline time, since this would be suscep-

tible to a timing attack. Users must choose an offline time that is

not so long to be disruptive, but not so short as to offer little privacy.

The Zipphone population’s policy should fix a chosen utility, and

employ a cool down time between each user’s identifier renewal

Figure 4: Top: PhoneLab. Bottom: RealityMining. Users lose a
significant amount of privacy when traces are on the order
of one day long. The accuracy at one month is equivalent to
the accuracy in Figure 3 at 100% utility.

based on that desired utility. For example, if users’ offline-times are

30 seconds, and are aiming to maintain 95% utility, they will keep

every identity for at least 30 seconds ÷ (1 − 0.95) =10 minutes.

Because going offline for 30 seconds can be fairly disruptive, we

analyzed scenarios where reconnections are disallowed if (i) the
user is in the middle of a phone call, or (ii) the device screen is active.
This data was available in only the PhoneLab dataset. Since phone

calls were intermittent, active calls could be kept online without

sacrificing privacy. However, within the offline periods, users would

on average miss 4 calls out of 24 per month while maintaining 95%

utility. Looking at screen usage, we show in Figure 5 (bottom) that

users could preserve active usage of phone undisturbed, but in

doing so would sacrifice additional privacy by a small amount (i.e.

about 2% across all utility levels).

5 INTEGRATING ZIPPHONEWITH
EMERGING MOBILE NETWORKS

In this section we discuss how Zipphone could be integrated in

emerging mobile cellular networks towards improved user privacy.

We first present necessary background on user authentication in

emerging cellular networks. We then detail how Zipphone can

utilize these networks for privacy-preserving services without re-

quiring network modifications. Finally, we present empirical results

for user-side energy overhead.
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Figure 5: Top: the effect of mixing-time on privacy while
maintaining a 95% utility for the PhoneLab dataset. Bottom:
privacy/utility of all users depending on whether their pri-
ority is privacy, phone calls, or screen use. Calls can be pri-
oritized without sacrificing privacy. However, remaining on-
line while the screen is on significantly reduces privacy.

5.1 Background
Traditionally, hardware SIM cards installed in mobile devices pro-

vide the basis for user provisioning in Mobile Network Operators

(MNO). Each SIM has a unique International Mobile Subscriber

Identity (IMSI), which is pre-programmed by the vendor prior to

being sold to a mobile subscriber. At the point of sale, when a user

purchases the SIM card, an entry is created in the MNO’s Home

Location Registry (HLR) connecting the IMSI with a Mobile Sta-

tion International Subscriber Directory Number (MSISDN; i.e., a

phone number). In addition, the IMSI is paired with a Ki value at

the MNO’s Authentication Center (AuC) and used for user equip-

ment (UE) authentication. We note that this procedure requires a

mapping between IMSIs and devices, not IMSIs and users and, thus,

it supports both pre-paid and post-paid services.

This hardware SIM approach to user provisioning is plagued

with high overhead, wasted IMSI allocations, and manual processes.

To address these limitations, the eSIMs standard [1] has been de-

veloped, which allows programmatic and on-the-fly provisioning

of a user’s identity on a network. With eSIMs, mobile users can

maintain multiple simultaneous mobile network identities and use

heterogeneous services from one or multiple MNOs. Three out of

the four major carriers in the US currently support eSIM, with one

major carrier supporting eSIM in 42 other countries worldwide [2].

eSIMs introduce new components to user management that are

useful for Zipphone. Similar to traditional SIMs, the eSIM functional

profile [5] carries phone identification information and is jointly

maintained in the MNO’s HLR and the AuC. The Subscription Man-

ager Data Preparation (SM-DP+), is responsible for provisioning a

user’s profile onto the eSIM. Thus, the SM-DP+ is the first point of

contact between an aspiring subscriber and the MNO, from which

the subscriber obtains their functional profile. There is no upper

limit on the amount of profiles an eSIM can maintain; it depends on

(i) the size of a single profile, (ii) the eSIM integrated memory and,

(iii) the operator’s preferences. As an example, T-Mobile currently

supports up to 10 concurrent eSIM Profiles [4]. Responding to the

eSIM revolution, both major mobile operating systems, Android
1

and iOS
2
, integrate APIs that allow the development of carrier apps

for programmatic user subscription management.

5.2 Proposed Zipphone Architecture
5.2.1 Overview. Zipphone can be realized as a smartphone applica-

tion. Upon installation and then periodically, the Zipphone app will

anonymously acquire multiple functional profiles and associated

service quants from the MNO’s SM-DP+. We define a service quant

as a set of mobile services (i.e. data, SMS and voice calls) that the

subscriber will use while active with the particular profile and note

that these quants can be obtained in the form of an anonymous pre-

paid service [3, 7]. Zipphone then programmatically swaps these

profiles as discussed in Section 3.3 and uses the corresponding

service quant for the duration in which a profile is active. This

functionality can be achieved without explicit cooperation from the

network provider or any modifications in the network as long as

the provider is eSIM-capable and offers anonymous prepaid plans.

5.2.2 Purchasing Credentials. Zipphone requires that users anony-
mously purchase profiles without linking to a consistent financial or
network identifier. This purchase would be a significant challenge

to deploying Zipphone as it must also not be used to profile the

user. Here we offer a sketch of how it could be done.

Purchase can be made through traditional means, such as a

credit card, to a third-party Mobile Virtual Network Operator. The

MVNO can issue Privacy Pass tokens [18]. These cryptographic

tokens cannot be forged by the client and cannot be spent twice,

and yet they are unlinkable to the purchase. The advantage of this

approach is that the MVNO has the option of keeping track of who

its customers are while not knowing where they are geographically.

In contrast, the MNO would know clients have paid the MVNO,

but not know who they are. The use of Privacy Pass makes it hard

for the MVNO and MNO to share knowledge. If the tokens are sold

by an MVNO, then signaling is required to the MNO to cancel the

IMSI a period of time after they are first used (e.g., 15–30 minutes).

To purchase the Privacy Pass tokens anonymously from an MNO

or MVNO is more challenging. Cash can be used in person. To pay

online, anonymous currencies such as Zcash [37, 57] can be used.

Protocols such as Dandelion++ [26] allow transactions to be issued

to Zcash with network anonymity. It’s also possible that an MNO

could accept Zcash payments, issue Privacy Pass tokens, and accept

the anonymized tokens later. It’s worth noting that Zipphone offers

benefits even when anonymous purchases cannot be made. For

example, law enforcement, activists, or journalists and other large

1
https://source.android.com/devices/tech/connect/esim-overview

2
https://developer.apple.com/documentation/coretelephony/

ctcellularplanprovisioning
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Figure 6: Experimental setup for power measurements on
3G and 4G networks.

organizations for whom security is crucial can create their own

trusted MVNO and maintain location privacy from an untrusted

MNO.

5.2.3 Communication without Leaking Identity or Location. For
an additional layer of privacy, Zipphone users should ignore the

MSISDN (phone numbers) provided by a profile. In other words,

users should not use MSISDN-based services such as text and voice

calls and instead should rely on IP based services over the data plan.

If a Zipphone user initiated or received overt LTE or unencrypted

VoIP calls, they risk being identified via a profile of call records

held by the carrier. Incoming calls are spam or attacks and should

be ignored. Note that the E911 service, which is tied to a handset

and not a user or SIM, would be still available if needed.

Some protection would be gained from using an encrypted VoIP

service, since it would not reveal to the carrier the identity of

the user’s contact, whom she calls, or from whom she receives

calls. However, if the IP address of the VoIP service is unique, then

connecting to it would help the MNO link a collection of profiles

together. An anonymous VoIP service, such as Torfone can be used;

note that anonymous VoIP has a performance penalty [47].

In general, an anonymous communication system, i.e., Tor, must

be used for all Zipphone communication (voice or data). However,

there is one change required. Tor chooses a consistent, single guard
relay to start all three-relay circuits through the Tor network. If

Zipphone users send all traffic to a single guard relay, it would be

a consistent identifier despite changing IMSIs. Instead of a guard

at the start of the circuit, Zipphone users should use a consistent

relay as the exit. This switching of roles allows Zipphone users to

receive all protections against the Predecessor Attack [64] that Tor

normally provides via guard nodes at the entry.

5.3 Zipphone Overhead
Zipphone triggers periodic disassociation/association from the mo-

bile carrier, which together incur additional battery draw and con-

nect/disconnect delays on the mobile device. Thus, in this section,

we quantify the overhead in terms of battery drain and latency,

incurred by Zipphone on 3G and 4G networks.

Experimental setup. In order to evaluate the power consump-

tion of mobile network association/disassociation, we used a Sam-

sung Galaxy S5 Duos phone with a bypassed battery and a Google

Fi SIM card, and a Monsoon Power Meter. We connected the phone

to the main channel of the power meter, as illustrated in Figure 6,
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Figure 7: Power trace for 3G (top) and 4G (bottom) associa-
tion and disassociation.

which allowed us to both power up the phone and measure its

energy consumption. In order to measure the power draw at 3G

and 4G networks, we forced the phone to the respective technology

and sampled the power draw at a granularty of 200𝜇s. We used the

phone’s Settings screen to toggle between Airplane Mode OFF and

Airplane Mode ON every 10 seconds for 4G and every 20 seconds

for 3G. We disabled all background services on the phone. This

ensured that we are only measuring the power draw from associ-

ation/disassociation, plus a baseline of about 700mW used by the

display for the Airplane Settings page. For each of 3G and 4G we

completed 10 full association/disassociation cycles. The average

experienced time and power to connect inform our simulation.

Figure 7 presents a zoomed version of a single asso-

ciate/disassociate cycle for 3G (top) and 4G (bottom)
3
. There are

several important points to note on each trace. First, the red vertical

line indicates the phone’s transition from Airplane Mode ON to

OFF state, which immediately triggers a network association. After

the association procedure completes, the phone enters FACH (For-

ward Access CHannel) state in anticipation for the user to begin

accessing the Internet. Since this does not happen in our controlled

activity, the phone futher transitions into IDLE state. At the instant

designated with a green vertical line, we toggle Airplane Mode ON,

which immediately triggers a disassociation procedure.

A Zipphone user would experience two types of overhead: (i) of-
fline time, and (ii) power draw. We measure the offline time as

the time between the beginning of network association and the

beginning of the FACH state. We measure the power overhead as

the sum of power to associate and power to disassociate, whereby

the power to associate is incurred from the begining of the network

association to the beginning of the FACH state, while the power

to disassociate is measured from the beginning till the end of the

disassociation procedure.

Figure 2 presents the average incurred overhead for our mea-

surement campaign. We see that the offline time incurred by 3G

is nearly double that of 4G. The power consumption, on another

hand, is comparable across the two technologies. We use these re-

sults to quantify the battery usage per day for users in our datasets.

To this end, we convert the measured power consumption for a

3
Note that the timescale (i.e. the 𝑥-axis range) for 3G is longer than that for 4G. On

3G, the phone takes significantly longer to transition to IDLE mode compared to 4G.
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mean (std dev)

3G

Power to connect (mW) 2,098 (435)

Power to disconnect (mW) 1,282 (157)

Time to connect (s) 5.0 (0.8)

Time to disconnect (s) 4.0 (1.0)

4G

Power to connect (mW) 2,006 (171)

Power to disconnect (mW) 1,120 (295)

Time to connect (s) 2.6 (0.2)

Time to disconnect (s) 3.0 (1.2)

Table 2: Time and power overhead incurred by a single asso-
ciation/disassociation procedure on 3G and 4G in our exper-
iments. Results are averaged over 10 runs.

Figure 8: Battery usage does not exceed 1% per day, regard-
less of desired privacy or network type.

single connect/disconnect from mW to mWh using the values in

Figure 2. We assume a 3.85V battery with a capacity of 2800mAh,

which is typical. On the 𝑥-axis we control the desired user utility

from 0.8 to 1, which effectively controls the amount of network

disconnect/connect cycles a user will incur for the duration of a day.

We multiply that number by the energy consumption (in mWh) and

then divide by the battery’s capacity to determine what fraction

of the battery is consumed due to Zipphone. Table 8 presents our

results, which indicate that the battery usage is at most 1% per day

regardless of technology (3G or 4G) or desired privacy.

Network control overhead. Finally, although we do not explic-

itly quantify it, we do not expect that Zipphone users would incur

significantly higher signalling overhead on the cellular network

compared to non-Zipphone users. In order to release network re-

sources and optimize clients’ battery life, network providers force-

fully disassociate users from the network after a network-defined

timeout [55], typically in the order of a few seconds as illustrated by

our measurements in Figure 7. Since Zipphone only operates when

a user is inactive, the control overhead incurred by the network

will be comparable with that from non-Zipphone users.

6 DISCUSSION
6.1 Limitations
Our technique has limitations. Privacy from the MVNO, and not

just the MNO, requires that users make purchases anonymously.

As such, our approach requires deliberate action from the user.

And we require devices that accept software SIMs. Skyroam is one

provider of devices based on a software SIM that operates in tens of

countries around the world. Another limitation is that users would

never be able to quantify their privacy gains as there is no way

to determine the number of other Zipphone users. In addition, we

do not address other privacy risks, which include physical attacks

(e.g., radio frequency fingerprinting [20]), software vulnerabilities,

use of location-based services, advertising fingerprints, browser

cookies, and malware.

Our evaluations are limited as well. For example, we do not ex-

plicitly consider users mixing when they are stationary; if they do,

attackers could also consider these additional mixes when linking.

Attackers may also use more advanced classifiers that account for

yet additional features (e.g., time of day or favourite locations [69])

to increase accuracy. Conversely, users could develop more effica-

cious methods to prevent linking.

Finally, our results are tied to our datasets, which are relatively

small and limited to university populations. Obtaining a usable

large-scale dataset is difficult, as MNOs are generally unwilling to

anonymize and share such data. Furthermore, collecting user mo-

bility data first-hand requires a fairly involved longitudinal effort.

Despite the limitations, this paper introduces an effective method

for mobile network users to take charge of their own location

privacy, and provides a detailed look at the efficacy of such a service.

6.2 Ethical implications
Mobile devices are an essential part of most people’s daily routine.

Accordingly, there is a tension between the right to location privacy

and the need to investigate crimes and threats to public safety. The

techniques we introduce and evaluate are effective to protecting

privacy, but unfortunately would thwart a common method of

investigation as well. Any deployment of Zipphone would have to

take into account this difficult, zero-sum game ethical dilemma.

7 CONCLUSION
Our work demonstrates that, fundamentally, users do not need to

trust wireless service providers with their location information.

We evaluated a deanonymization attack that uses a combination

of location profiling and trajectory linking, and showed that it is

effective in identifying long-term pseudonyms. Using two sepa-

rate datasets of call detail records, we then demonstrated that a

Zipphone user can defend against such attacks by renewing her

identifier regularly. We also evaluated the utility cost in terms of

time offline and battery life, and showed it to be minimal. Users

who do not use any anonymization scheme are always identifiable.

In our trace-driven evaluations, a non-Zipphone user who is ha-

bitual and conventional (predictable and mixing) who renews her

pseudonym monthly is identifiable 69% of the time, and one who

uses Zipphone is identifiable 24% of the time if she sacrifices 5% of

her utility and 1% of battery life, towards a lower bound of 19% if

she sacrifices more. In other words, users can significantly reduce

their identifiability by up to 45% by renewing their pseudonym

after offline periods consuming less than 5% of their uptime.
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