
DEMO: RESCURE: Retrofit Security for Critical Infrastructures

Mario Münzer
Stefan Ilić

muenzer@technikon.com

ilic@technikon.com

Technikon Forschungs- und

Planungsgesellschaft mbH

Villach, Austria

Georgios Selimis
Rui Wang

Georgios.Selimis@intrinsic-id.com

Rui.Wang@intrinsic-id.com

Intrinsic ID

Eindhoven, Netherlands

Frans M.J. Willems
Lieneke Kusters

F.M.J.Willems@tue.nl

C.J.Kusters@tue.nl

Eindhoven University of Technology

Eindhoven, Netherlands

ABSTRACT

Low-cost interconnected devices, so-called Internet-of-Things (IoT),

commonly have no dedicated or posses insu#cient hardware secu-

rity features. This is challenging, as IoT devices are becoming an

integral part of critical infrastructures providing much needed addi-

tional functionality but also creating a signi$cant security threat to

the infrastructure. Due to the scale of IoT integration in critical in-

frastructures, a key issue in initial deployment and replacing of the

devices is often the cost. RESCURE delivers a low-cost IoT security

solution based on unique hardware anchors. More precisely, we are

using PUFs (Physical Unclonable Function) technology based on

SRAM (Static Random-Access Memory), which provides a unique

and unclonable identi$er as well as a root key for each device. As

SRAM-PUFs-based approaches require no additional specialized

hardware, it also presents a viable approach of retro$tting existing

embedded devices already used.

CCS CONCEPTS

• Security and privacy Embedded systems security; Au-

thentication.

KEYWORDS

Internet-of-Things, Embedded systems security, Physically Un-

clonable Function, End-to-end encryption, multiple observations

ACM Reference Format:

Mario Münzer, Stefan Ilić, Georgios Selimis, Rui Wang, Frans M.J. Willems,

and Lieneke Kusters. 2020. DEMO: RESCURE: Retro$t Security for Critical

Infrastructures. InWiSec ’20: 13th ACM Conference on Security and Privacy

in Wireless and Mobile Networks, July 08–10, 2020, Linz, Austria. ACM, New

York, NY, USA, 3 pages. https://doi.org/10.1145//3395351.3401793

1 INTRODUCTION

The IoT device, as de$ned by ARM [1], is a piece of hardware

mostly equipped with a sensor transmitting data over the inter-

net. As cost saving measure, IoT devices are often based on small,

inexpensive, and resource constrained chips. This design choice

helps with scalability, as IoT devices usually have wide deployment,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro$t or commercial advantage and that copies bear this notice and the full citation
on the $rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci$c permission and/or a
fee. Request permissions from permissions@acm.org.

WiSec ’20, July 08–10, 2020, Linz, Austria

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8006-5/20/07. . . $15.00
https://doi.org/10.1145//3395351.3401793

but reduces support for existing security solutions which often

rely on dedicated hardware security features. Furthermore, IoT de-

vices are often using M2M (Machine-to-Machine) communication,

have 24/7 uptime and are deployed in $eld, making them harder

to access physically and replace. Due to given risk factors, many

recent attacks target on IoT devices as the $rst step in order to

compromise the underlying infrastructures [7]. RESCURE is a Euro-

pean research project, focused on developing low-cost IoT security

solution for device protection and secure communication while

keeping selected approach applicable to existing devices. The US

Department of Homeland Security [6] recommends that devices

rely on hardware with incorporated security features, e.g, Arm

TrustZone [2]. In RESCURE, to cover a wide range of devices while

following set recommendations, we focus on the most commonly

available hardware component of IoT devices, namely the SRAM.

Generating the root key using SRAM-PUF technology is a low-cost

alternative to storing a key in protected memory. Furthermore,

since the SRAM is already available on any IoT device, our scheme

supports retro$tting the existing hardware to a secure system.

AWS

End-to-End Encryption

Figure 1: OTA update & deployment !ow of demonstrator

2 RESCURE

Due to inherent process variation during the manufacturing of

SRAM, small and uncontrolled variations occur in the silicon ma-

terial giving each SRAM a unique initial state [4]. The initial state

is not constant but varies between each SRAM power up phase

to a certain degree, no matter the production line. Nevertheless,

as the intra-subject di&erence is much less pronounced than the

inter-subject di&erence, even between SRAMs from the same man-

ufacturer, this enables us to uniquely identify devices based on the

initial state and generate appropriate root key [3]. In order to turn

the noisy SRAM initial state into a reliable and device-unique root

key, a helper data scheme is applied on top of SRAM-PUF. For error

343

WiSec ’20, July 08–10, 2020, Linz, Austria Ilić and Münzer, et al.

correction, we implemented an algorithm based on concatenation

of BCH code (15,7,5) and repetition code (7,1). Given the 5% inter-

subject di&erence observed on the device at room temperature, our

helper data scheme can regenerate the root key with the error rate

of 10−7.

In RESCURE, we implemented three distinct security features

based on the root key extracted from the SRAM-PUF: 1) secure

connection and device identi$cation with the cloud; 2) E2E (End-to-

end) encrypted communication with backend; and 3) secure OTA

(Over-the-air) software/$rmware update.

The $rst usage of SRAM-PUF root key, in RESCURE, is a runtime

generation of SECP256R1 key pair. During the device enrolment

phase, we capture the key pair calculated on the device and generate

an appropriate device certi$cate, which we register with the cloud

provider (in our case Amazon Web Services). This enables us to

tie the key pair, and therefore SRAM-PUF root key, with a thing

ID, a unique identi$er with whom Amazon identi$es the device.

This approach prevents the cloning of software as a di&erent key

would be generated on a di&erent device. Also, as an added bene$t,

generating keys at runtime avoids the possibility of their extraction

from *ash and the need for complex key protection schemes. The

key generation itself is based on seeding HMACDRBG (hash-based

message authentication code - deterministic random bit generator)

using the root key and using it as an input to SECP256R1 generation.

The key pair required for E2E encryption is also generated in

the same manner. Meanwhile, the backend (in our case node.js

script running on PC) generates its own SECP256R1 keypair. Both

the device and the backend register to the cloud provider and sub-

scribe to the same MQTT topic. Once they exchange their public

keys, both sides generate shared secret using ECDH key exchange

protocol. The data encryption and authentication between these

endpoints is based on this shared secret. Thus, another security

layer is established on top of the TLS connection, preventing cloud

provider access to the unencrypted data.

The last feature based on SRAM-PUF root key is theOTA$rmware

update. New application images, during transit and storage at Ama-

zon S3 servers, are encrypted using ChaCha20 symmetric cipher.

To prevent an attacker from obtaining this symmetric key from the

device *ash, we encrypt it using the root key. In all of the given

cases, the root key is zeroed out immediately after use. Further,

even if we reserve and use a certain amount of the SRAM, this

space is only needed within the bootloader and released right after

the root key generation. In RESCURE we have also studied new

methods that can improve reliability of the root key reconstruction.

As such, we have developed a new scheme that we call the multiple

observations helper data scheme. The scheme can construct helper

data that is based on multiple SRAM-PUF observations instead of

a single observation. The more observations are used, the more

reliable the key reconstruction is. We have built a MATLAB GUI

that explains the functionality of the scheme, and demonstrates its

performance through simulations, see Section 3.2.

3 DEMONSTRATION

We present the functionality developed in RESCURE by showcas-

ing two distinct demonstrators: initial application deployment on

board and procedure of OTA $rmware update (D1) and MATLAB

application that demonstrates the multiple observations helper data

scheme (D2). For each demonstrator, the authors (presenters) will

explain the underlying usage of SRAM-PUF and achieved results.

3.1 D1: Deployment and OTA Firmware Update

In this demonstrator, we aim to illustrate deployment and OTA

update work-*ow using the B-L475E-IOT01A board [8], based on

STM32L475VG [9] MCU. The architecture of the system is pre-

sented in Figure 1. The demonstration starts by *ashing the initial

application image, bootloader and necessary meta-data using RES-

CURE GUI. Once run, the application automatically establishes a

connection to AWS based on SECP256R1 key pair generated by

using the SRAM-PUF root key at runtime. Using this connection,

we send periodic sensor data (temperature data) to a predetermined

MQTT topic. In the second part of the demonstration, we create

an OTA update job using RESCURE GUI. The OTA Update Agent

running on the board is noti$ed by AWS, on a dedicated MQTT

topic, that a new update is available and starts the update proce-

dure. It regenerates SRAM-PUF root key and decrypts symmetric

encryption key stored in *ash. Using this key, the downloaded

chunks, representing the $rmware update, are decrypted as they

arrive using ChaCha20. When the download is $nished, the reboot

of the IoT device is triggered and the new application is executed.

For this demonstration purpose, the updated application image en-

ables, as an additional functionality, end-to-end encryption based

on SRAM-PUF.

Figure 2: RESCURE communication GUI

344

DEMO: RESCURE: Retrofit Security for Critical Infrastructures WiSec ’20, July 08–10, 2020, Linz, Austria

As presented in Figure 2, the $rst section of the RESCURE com-

munication GUI is displaying the raw data captured by the IoT

device, which in turn represents the temperature sensor data in

its unencrypted state. Following, respectively in the second sec-

tion of the communication GUI, the encrypted messages received

are displayed, and represents the communication tra#c at AWS’

side. Following further, in the third section of the GUI, $nally the

decrypted messages are displayed, which in turn represents the

end-point of the end-to-end communication. Resulting, it is clearly

demonstrated that the messages cannot be decrypted on the AWS’

side and in turn are only visible to the IoT and backend. Additionally,

we present the temperature sensor data, which is the example data

transferred between IoT and backend, in a corresponding graph.

3.2 D2: Multiple Observations Helper Data

Scheme

In this demonstrator, we aim to illustrate performance and security

of the multiple observations helper data scheme. The demo is run-

ning in MATLAB, where we use a statistical model[5] to simulate

the SRAM-PUF observations. Furthermore, we use a concatenated

LDPC(256,128) and repetition code as the error-correcting code.

During the demo we visualize the helper data construction and key

reconstruction in real-time. We vary the number of used observa-

tions, and plot the resulting reconstruction error rate (FER) in real

time.We show that FER decreases whenmore observations are used.

Furthermore, it is possible to vary the rate of the error-correcting

code, by adjusting the used repetition rate. Note that a smaller rate

means increased e#ciency of the scheme, since less SRAM cells

are required to achieve the same key length. The simulation results

show that a similar FER can be achieved with smaller repetition rate

and thus considering multiple observations can improve e#ciency

of the scheme.

Figure 3: RESCURE MATLAB GUI

Finally, we calculate the log-likelihood ratios (LLRs) after observ-

ing the new helper data, both for the decoder and for an attacker.

For the decoder, it shows how the updated helper data (based on

more observations) improves the reliability of the estimated code

bits. For the attacker, it represents the information leakage about

the code bits. The result shows that for an unbiased SRAM-PUF,

the LLRs of the attacker are constant and do not change when more

observations are used. Therefore, it should convince a viewer that

no leakage occurs as a result of the multiple observations helper

data for unbiased SRAM-PUFs. Instead, for a biased SRAM-PUF the

derived LLRs show that information about the code bits is leaked

to an attacker. Therefore, the scheme is not secure in case of biased

SRAM-PUFs.

A screenshot of the MATLAB GUI is shown in Figure 3.

4 CONCLUSION

We presented SRAM-PUF based security enhancements developed

in RESCURE. The objective of this project is to provide a suitable

and cost-e&ective way to retro$t existing devices by adding tamper-

protection, secure storage, end-to-end communication encryption,

unclonable ID and device authentication. We aim to increase the

security of IoT critical infrastructures providing solution applicable

to a variety of devices including low-end, resource-constrained

devices.

ACKNOWLEDGMENTS

This work was partially supported by the Eurostars-2 joint pro-

gramme with co-funding from the European Union Horizon 2020

research and innovation programme under the grant agreement

E11897 RESCURE "Retro$t Security for Critical infrastructures".

Furthermore, this work was also partially supported by the Aus-

trian Ministry for Transport, Innovation and Technology under the

framework of "IKT der Zukunft" with the FFG grant agreement

project 865233.

REFERENCES
[1] ARM. 2020. IoT Devices. Retrieved April 08, 2020 from https://www.arm.com/

glossary/iot-devices
[2] ARM. 2020. TrustZone Technology. Retrieved April 03, 2020 from https://developer.

arm.com/ip-products/security-ip/trustzone
[3] Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, and Pim Tuyls. 2007. FPGA

Intrinsic PUFs and Their Use for IP Protection. In Cryptographic Hardware Em-
bedded Syst. - CHES. 63–80.

[4] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu. 2009. Power-Up SRAM
state as an identifying $ngerprint and source of true random numbers. IEEE Trans.
Comput. 58, 9 (2009), 1198–1210. https://doi.org/10.1109/TC.2008.212

[5] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. 2009. A soft decision helper
data algorithm for SRAM PUFs. In IEEE Int. Symp. Inf. Theory - ISIT. 2101–2105.
https://doi.org/10.1109/ISIT.2009.5205263

[6] U.S. Department of Homeland Security. 2016. Strategic Pronciples for se-
curing the Internet of Things (IoT). Retrieved March 19, 2020 from
https://www.dhs.gov/sites/default/$les/publications/Strategic_Principles_
for_Securing_the_Internet_of_Things-2016-1115-FINAL....pdf

[7] Ioannis Stellios, Panayiotis Kotzanikolaou, Mihalis Psarakis, Cristina Alcaraz, and
Javier Lopez. 2018. A Survey of IoT-enabled Cyberattacks: Assessing Attack Paths
to Critical Infrastructures and Services. IEEE Communications Surveys I& Tutorials
PP (07 2018), 1–1. https://doi.org/10.1109/COMST.2018.2855563

[8] STMicroelectronics. 2020. B-L475E-IOT01A. Retrieved April 08, 2020 from https:
//www.st.com/en/evaluation-tools/b-l475e-iot01a.html

[9] STMicroelectronics. 2020. STM32L475VG. Retrieved April 08, 2020 from https:
//www.st.com/en/microcontrollers-microprocessors/stm32l475vg.html

345

