
Paging Storm Attacks against 4G/LTE Networks from Regional
Android Botnets: Rationale, Practicality, and Implications

Kaiming Fang
Department of Computer Science

Binghamton University, State University of New York
kfang2@binghamton.edu

Guanhua Yan
Department of Computer Science

Binghamton University, State University of New York
ghyan@binghamton.edu

ABSTRACT
Although the impact of mobile botnet attacks against cellular net-
works has been studied in a number of previous works, little atten-
tion has been paid to regional botnets, where bot-infected mobile
devices are geographically concentrated at local areas. In this work
we investigate a new type of threats called paging storm attacks,
which can be launched from a regional botnet to exhaust the lim-
ited paging capacity of cells in a 4G/LTE (Long-Term Evolution)
network. As paging storm attacks can delay paging requests for
legitimate time-critical voice or video calls in a target area, their real-
life implications include user annoyance, distortion of call center
analytics, and loss of productivity. To demonstrate the feasibility of
such attacks, we design and implement a proof-of-concept Android
botnet that can coordinate bot activities to create pulsating paging
requests within a short period of time. We mathematically analyze
the probability that normal paging requests are delayed due to a
botnet attack. Experimental results observed from a high-fidelity
emulation testbed reveal that paging storm attacks launched from
a regional botnet can create repetitive surges of paging requests in
the target LTE network, thereby delaying time-critical voice/video
calls by several seconds.

CCS CONCEPTS
• Security and privacy→ Mobile and wireless security.

KEYWORDS
Paging storm attacks, 4G/LTE networks, mobile botnets, Android

ACM Reference Format:
Kaiming Fang andGuanhua Yan. 2020. Paging StormAttacks against 4G/LTE
Networks from Regional Android Botnets: Rationale, Practicality, and Im-
plications. In 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec ’20), July 8–10, 2020, Linz (Virtual Event), Austria.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3395351.3399347

1 INTRODUCTION
The importance of 4G/LTE (Long-Term Evolution) network infras-
tructure to society calls for thorough investigation of their resilience
against mobile botnet attacks. Although the impact of mobile botnet

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8006-5/20/07. . . $15.00
https://doi.org/10.1145/3395351.3399347

attacks against cellular networks has been studied in a number of
previous works [14, 18, 34, 49, 50], little attention has been paid to
regional botnets, which recruit bots by infecting mobile devices
geographically concentrated at local areas. Such regional botnets
can be constructed by distributing bot malware as localized mobile
apps, which have been gaining popularity in the mobile industry
due to their ability in increasing return-on-investment [15]. Using
regional botnets, it is possible to attack the cellular network infras-
tructure shared by their infected mobile devices, even though the
mobile malware penetration rate can still be low world wide [35].

In this work we investigate a new type of threats called paging
storm attacks, which can be launched from a regional botnet. The
intuition behind such attacks is simple: if the attacker can use a
regional botnet to exhaust the limited paging capacity of a base
station, legitimate paging requests have to be delayed in the target
area. Albeit conceptually easy to understand, paging storm attacks
are not straightforward to carry out practically. First, to exhaust the
paging capacity of a cell, bot activities in the regional botnet have to
be highly coordinated so that the paging requests triggered can be
pulsated within a very short period of time. However, as revealed in
a few recent works [30, 38, 39, 44], it is difficult to create coordinated
and decentralized pulsating attacks in distributed systems. Second,
a paging request is triggered inside the LTE network only if the
receiving terminal is in an idle state. It is not easy for a bot malware
to infer whether its residing mobile phone is in an idle state, as
such internal states are only available in the cellular modem; it
is even more difficult to find another mobile device that is idle so
sending a message to it would trigger a new paging request inside
the network. Last but not least, even if a bot malware manages
to infer its residing mobile device to be idle, how to report such a
state to the botmaster server becomes a paradox because doing so
through the LTE network would break the idleness of the device!

Against this backdrop, we propose a novel mobile botnet, in
which each bot infers the idleness of its residing mobile device due
to lack of cellular data transmissions. Bot malware on active devices
regularly send beaconmessages to the botmaster server, while those
on idle ones do not. If the number of idle devices inferred exceeds
a certain threshold, the botmaster commands active devices to
immediately send short messages to the idle ones. A surge of paging
requests generated due to these messages within a short period of
time creates a pulsating paging storm attack in the network. As the
bot-infected mobile devices in a regional botnet are likely to stay in
the same area, it is possible that the pulsating paging requests can
overload the paging capacity of target base stations, thus delaying
time-critical services such as voice and video calls.

Existing efforts on mobile botnet attacks are mostly focused on
design and analysis of conceptual mobile botnets [17, 33, 36, 45, 53]

295

https://doi.org/10.1145/3395351.3399347
https://doi.org/10.1145/3395351.3399347

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Kaiming Fang and Guanhua Yan

Figure 1: LTE network architecture Figure 2: LTE network protocol stacks

and their attack effects are usually assessed through back-of-the-
envelope calculations or coarse-grained simulations. In contrast to
these previous efforts, our work validates the practicality of paging
storm attacks by implementing a proof-of-concept Android botnet
with bot malware needing only a few permissions from infected An-
droid devices. Moreover, we build a high-fidelity emulation testbed
to evaluate the realistic consequences of paging storm attacks from
the proof-of-concept Android botnet.

Our main contributions are summarized as follows: (1) We iden-
tify the key hurdles involved in carrying out paging storm attacks,
such as inferring the idleness of each malware-infected mobile de-
vice in order to create paging requests and the paradox that having
an idle device report its inactivity through the LTE network inter-
feres with its current network state. We then design and implement
a proof-of-concept Android botnet that overcomes these challenges.
(2) We mathematically analyze the probability that a legitimate
paging request can be delayed by a paging storm attack and present
numerical results that shed light on how the effects of paging storm
attacks are affected by the botnet size and key LTE network param-
eters. (3) To study the resilience of 4G/LTE networks against paging
storm attacks, we develop a high-fidelity emulation testbed that
connects a state-of-the-art LTE network emulator and the official
Android Emulator within which Android applications can be dy-
namically executed. We implement some missing features needed
to study the effects of paging storm attacks truthfully. (4) Using this
testbed, we perform a variety of experiments to gain insights into
the resilience of an LTE network against paging storm attacks car-
ried out by the proof-of-concept Android botnet. Our experimental
results reveal that paging storm attacks from a regional botnet can
delay time-critical voice/video calls by several seconds, for which
the real-life implications include user annoyances, distortion of call
center analytics, and loss of productivity.

2 PRIMER ON 4G/LTE NETWORKS
In order to explain how paging storm attacks work in 4G/LTE
networks, we first introduce their paging procedures. Figure 1 il-
lustrates the architecture of a typical 4G/LTE network, with its
protocol stacks shown in Figure 2. To use LTE network services, a
UE (User Equipment), such as a mobile phone, connects with a RAN
(Remote Access Network) called E-UTRAN (Evolved Universal Ter-
restrial Radio Access Network), which consists of a number of base
stations called eNodeBs. An eNodeB is connected to the all-IP core
of an LTE network, which is called EPC (Evolved Packet Core). In

the control plane, an MME (Mobility Management Entity) serves as
the main signaling node as it keeps track of the location of each
UE at the tracking area level, mutually authenticates each UE with
aid of the HSS (Home Subscriber Server), which is a database that
contains authentication and billing information of the subscribers,
and selects appropriate gateways for user traffic sessions in the user
plane. In the user plane, an LTE network is connected to an external
PDN (Packet Data Network), such as the public Internet or an IMS
(IP Multimedia Subsystem), through a PGW (PDN Gateway). The
PGW interacts with the PCRF (Policy and Charging Rules Function)
server for the network service policy, the QoS (Quality of Service)
setting information for each user session, and the charging rule for
each user account. The SGW (Serving Gateway) serves as the anchor
point that forwards user traffic between eNodeBs and PGWs.

UE attachment to the network. When a UE attaches itself to
the network, it is authenticated and registered within the network,
resources such as EPS (Evolved Packet System) bearers are allocated
for its data sessions, and mobility management functions are acti-
vated to keep track of its location inside the network. Henceforth,
the UE’s states are managed by two separate protocol layers: the
RRC (Radio Resource Control) layer of the serving eNbodeB and the
NAS (Non-Access Stratum) layer of the serving MME (see Figure 2).
Moreover, the NAS layer of the MME keeps multiple sets of states
for the UE, including EMM (EPS Mobility Management) states and
ECM (EPS Connection Management) states. A newly attached UE
is in a joint state of RRC-CONNECTED (an RRC connection has been
established between the UE and the eNodeB), EMM-REGISTERED (the
UE is attached, an IP address has been assigned to it, an EPS bearer
has been established, and the MME knows its location at the track-
ing area level), and ECM-CONNECTED (an NAS signaling connection
is established between the UE and the MME and radio and network
resources have been allocated for the UE).

S1 release due to user inactivity. As seen in Figure 2, the S1
interface is used between an eNodeB and the EPC. On detection
of the UE being idle for a while, the S1 release procedure can be
triggered by the eNodeB to destroy the S1 bearer between the
eNodeB and the SGW in the user plane as well as the S1 signaling
connection between the eNodeB and the MME in the control plane.
After S1 release, the UE is in a joint state of RRC-IDLE (no RRC
connection has been established between the UE and the eNodeB),
EMM-REGISTERED, and ECM-IDLE (no NAS signaling connection is
established between the UE and the MME and no physical resources
are allocated). Hence, for an idle but still attached UE, the MME

296

Paging Storm Attacks against 4G/LTE Networks from Regional Android Botnets WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Table 1: Parameters needed to calculate paging frames and paging occasions

Notation Meaning Values Source
SFN System Frame Number {0, 1, ..., 1023}
Tu UE-specific DRX cycle {32, 64, 128, 256} (in frames) MME
Tc Cell-specific DRX cycle {32, 64, 128, 256} (in frames) eNodeB
T min{Tu ,Tc } min{Tu ,Tc } (in frames)
B Total number of paging occasions in a DRX cycle {4T, 2T, T, T/2, T/4, T/8, T/16, T/32 } eNodeB

UEID UE Identity Index Value UE’s IMSI mod 1024 UE
N Number of paging frames per DRX cycle min{T ,B}
Ns Number of subframes used for paging within a paging frame max{1,B/T }
Ind Index pointing to a predefined table for calculating paging occasion ⌊UEID/N ⌋ mod Ns
R Maximum number of UE identities on a paging record list [1, ..., 16] eNodeB

knows its location at the tracking area level, but its RRC and NAS
signaling connections are removed from the network and all the
radio and network resources allocated to it are released.

Paging. The network notifies an idle but still attached UE of
various events (e.g., an incoming call) using a paging process. As
the MME keeps track of each UE in an EMM-REGISTERED state at
the tracking area level, a paging message is sent by the MME to
all the eNodeBs within the current tracking areas of the UE and
each eNodeB notified delivers the paging request to the intended
UE through its downlink physical channels. In LTE, both uplink
and downlink transmissions are done in consecutive radio frames
(frames for short), which are numbered repeatedly from 0 to 1023
by their SFNs (System Frame Numbers). Each frame contains 10 sub-
frames, the duration of which is one millisecond. Symbols within a
subframe are organized into various physical channels. The eNodeB
decides which UEs should be given the resources to send or receive
data through a scheduling process at a subframe level.

An idle but still attached UE has its device radio operating at low
power and listens to the control traffic on the PDCCH (Physical
Downlink Control Channel) from the eNodeB to check if there are
any incoming paging requests. If an idle UE monitors the PDCCH
for paging requests in every subframe, its battery power would be
drained quickly. To overcome this issue, a UE in an RRC-IDLE state
that uses DRX (Discontinuous Reception) for paging wakes up only
once every DRX cycle, which includes between 32 and 256 frames,
or equivalently between 0.32 and 2.56 seconds.

To describe how a UE decides which frames and subframes it
should monitor for paging requests in a DRX cycle, a few notations
are introduced in Table 1. A frame is treated by both the UE and
the eNodeB as a paging frame if the following holds for its SFN:

SFN mod T = (T /N) × (UEID mod N) (1)

For instance, given Tc = 64, Tu = 128, B = T /4, and UEID = 20,
we have T = 64, B = 16, and N = 16, so the paging frames include
those whose SFNs modulo 64 are equal to 16.

The subframe within a paging frame containing the UE’s paging
information is called its paging occasion. In the same example, we
have Ns = 1 and Ind = 0 where definitions of Ns and Ind are given
in Table 1. Multiple UEs may share the same paging occasion. At its
paging occasions, a UE wakes up and monitors the PDCCH channel
for P-RNTI (Paging Radio Network Temporary Identifier), which is
a paging indicator of fixed value 0xFFFE. If the UE detects P-RNTI,

it continues to demodulate and decode the RRC paging message
transmitted on the PDSCH (Physical Downlink Shared Channel).
Each RRC paging message contains a paging record list of at most
R identities, where the maximum value of R is 16. If the UE finds its
own identity on the paging record list, it initiates a service request
to the MME; otherwise, it goes back to a sleeping mode and waits
for its paging occasion in the next DRX cycle.

3 RATIONALE OF PAGING STORM ATTACKS
One key observation about the paging procedure of a 4G/LTE net-
work is that the number of paging requests deliverable within a
DRX cycle is at most B · R, where we recall B is the total number
of paging occasions in a DRX cycle and R the maximum number
of identities on the paging record list in an RRC paging message.
Hence, if an attacker uses a regional botnet to create pulsating paging
requests delivered to the same base station, they may exhaust all the
R slots for a paging occasion so legitimate paging requests mapped
to the same paging occasion have to be delayed until the next DRX
cycle. Similarly, these legitimate paging requests can be further
delayed if the next paging occasion is still overwhelmed by the
attack paging requests or other legitimate ones.

By delaying time-critical voice/video calls, real-life implications
of paging storm attacks include the following. (1) User annoyances:
A caller may feel frustrated if her call cannot get through quickly
and abandon her call prematurely. (2) Distortion of call center analyt-
ics: The industry standard for the voice channels of a call center is
to provide sufficient staffing so that 80% of voice calls be answered
within 20 seconds [5]. Due to delayed call setup by paging storm
attacks, some customers may give up their calls before getting con-
nected to the call center or before their calls are answered. These
situations distort call center analytics and cause miscalculation of
staffing level. (3) Loss of productivity and even human life: Mission-
critical service providers (e.g., police, fire brigade, ambulance, and
first responders) rely on 4G/LTE networks for instant communica-
tions [21]. Delayed calls may not only lead to loss of productivity by
these services but also loss of human life in emergency situations
(e.g., heart attacks, earthquakes, fire, and mass shooting).

Mathematical analysis. We derive the likelihood that normal
paging requests can be delayed because of a paging storm attack, us-
ing the notations in Table 1. As there are in total B paging occasions,
each supporting page requests destined to at most R distinct UEs,
a legitimate paging request may be delayed if its paging occasion

297

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Kaiming Fang and Guanhua Yan

Figure 3: Analysis of paging storm attack effects (K = Kl +Ki)

is shared by more than R paging requests waiting to be delivered
within the same DRX cycle. We consider an ideal scenario where all
the paging requests destined to the idle bots arrive at the eNodeB
within a short period of time that is less than a DRX cycle, assuming
that the variation of transmission delays of both short messages and
paging requests is negligible due to both their small sizes and use
of high-speed wired transmissions in the core network. Suppose
that at the time of the botnet attack, there are Kl legitimate paging
requests and Ki paging requests destined to idle bots within the cell
of interest. We also assume that within the cell the paging occasion
for each paging request, regardless of its being legitimate or not, is
uniformly distributed over all the B choices in the same DRX cycle.

We analyze the increased probability of having a paging occasion
with more than R paging requests waiting to be delivered due to the
paging storm attack. The problem can be modeled as an extension of
the famous birthday problem, which is called the birthday paradox
for multi-collisions [47]. The multi-collision problem asks: given
that there are n buckets and q identical balls are independently
thrown into these buckets, what is the probability that there is at
least one bucket with no fewer than s balls? The birthday prob-
lem is a special case of the multi-collision problem with s = 2.
Let C(n,q, s) denote the solution to the multi-collision problem.
According to [47], C(n,q, s) can be calculated recursively:

C(n,q, s) =
1

ns−1

q∑
i=s

(
i − 1
s − 1

)
(1 −

1
n
)i−s (1 −C(n − 1, i − s, s)),

where C(n,q, s) = 0 for q < s and C(n,q, s) = 1 for n = 1 and q ≥ s .
When multi-collisions occur, paging requests that fall into their

corresponding paging occasions have to wait for the next DRX cycle.
Hence, the effects of a paging storm attack can be modeled as the
multi-collision probability under n = B, q = Kl + Ki , and s = R + 1.
In Figure 3, we show the multi-collision probability, C(B,K = Kl +
Ki ,R + 1) with B ∈ {4, 8, 16}, K ∈ {10, 20, ..., 100}, and R = 7
(which is recommended for LTE 5MHz bandwidth). For example,
when B = 8 and Kl = 30, adding 10 more paging requests from the
botnet increases the multi-collision probability by 2.4 times from
0.214 to 0.737; when B = 16 and Kl = 50, adding 20 more paging
requests from the botnet increases the multi-collision probability
by 3.2 times from 0.181 to 0.760. Hence, a paging storm attack can
increase the probability of delayed paging requests significantly.

4 PROOF-OF-CONCEPT ANDROID BOTNET
In this section, we present the design and implementation of a
regional botnet for paging storm attacks.

4.1 High-level botnet design
The bot malware mimics a legitimate mobile application targeting
a local area. A few high-level design issues are discussed as follows.

First, bot activities are coordinated through a centralized bot-
master server. We do not assume that individual bots should know
the existence of other peers unless the botmaster informs them.
Moreover, we do not consider peer-to-peer mobile botnets because
the high transmission delays of C&C (Command and Control) mes-
sages in such overlay networks make it difficult to create pulsating
paging storm attacks. The botmaster can be deployed on any pub-
licly accessible server. C&Cmessages transmitted between bots and
the botmaster can be encrypted to make their detection difficult.

Second, attack paging requests are triggered through SMS mes-
sages. We choose SMS because it is ubiquitously deployed and is
more stealthy than phone or video calls. Although not perfect, SMS
is still a desirable choice here. Late delivery of short messages can
occur due to a variety of reasons [10]. For example, the receiving
terminal may not be ready or experience weak signals at the time
of delivery, the observable delivery receipts arrive much later than
the real SMS contents due to their low priority in transmission,
or texting during heavy network use can also affect text delivery
speed. In many of these cases, sending SMS messages can still trig-
ger immediate paging requests to the receiving terminals, although
the messages may be eventually delivered to these devices later.

Last, the botnet is designed to be resilient against easy mitigation.
As the botnet attack is aimed at exhausting the paging capacity of a
target cell, a straightforward defense mechanism seems to be recon-
figuring the network parameters to increase a cell’s paging capacity.
Idle-mode paging configurations are contained in SIB2 (System
Information Block 2) in LTE. A mitigation scheme that modifies
paging configurations to increase a cell’s paging capacity requires
paging messages to inform UEs in RRC-IDLE or RRC-CONNECTED
about system information changes [7]. Such circular dependency
makes it difficult to mitigate our proposed attack easily.

4.2 Technical Challenges
To implement the botnet as designed above, we need to address
the following technical challenges. (1) Bot infection challenge: A
paging request is created only if the recipient UE is registered to
the network but idle. Hence, to launch a paging storm attack, the
botmaster needs to know if an UE is in such an exploitable state.
Such knowledge can be obtained by malware installed on the UE
and reported to the botmaster. (2) State inference challenge: On a
mobile phone, the LTE network protocol stack is typically imple-
mented by its baseband processor. After the bot malware infects
the mobile device, it runs only on its application processor. Hence,
the LTE network state of the UE can only be inferred through use
of telephony APIs (Application Programming Interfaces) provided
and permitted by the OS (Operating System) running on the appli-
cation processor. (3) State transmission challenge: If the bot malware
detects the LTE network state of the UE to be idle, sending this
state to the botmaster through the LTE network requires the UE’s
reconnection to the network and thus interfere with its idle state in
the network, leading to a paradoxical situation! (4) Attack coordina-
tion challenge:With information collected about idle and connected
UEs, the botmaster commands the bots on the connected UEs to

298

Paging Storm Attacks against 4G/LTE Networks from Regional Android Botnets WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Figure 4: Android botnet for paging storm attacks

send short messages to the idle ones. As in any other pulsating
DDoS (Distributed Denial of Service) attacks [30, 38, 39, 44], effec-
tive coordination is needed among bot malware to trigger pulsating
paging requests in the network.

The bot infection challenge can be addressed by traditional mal-
ware delivery mechanisms on the Android platform. For example,
bot malware can pretend to be a legitimate application in an online
marketplace for Android apps, such as Google Play, or a malicious
website tricks a visiting mobile device into downloading the bot
malware. It is out of the scope of this work to develop a specific bot
distribution mechanism for launching paging storm attacks.

4.3 Algorithm description of Android botnet
We now present the algorithms of a proof-of-concept Android bot-
net which overcomes the aforementioned challenges. Its schematic
is illustrated in Figure 4. The practicality of our proposed botnet
has been validated on both Android 4.4 (KitKat) and Android Q.

Bot. Each individual bot wakes up periodically to detect if there
is any cellular data activity by the UE in the last period. If there are
any cellular data received or sent, it means that the UE must not be
in an idle state so the bot sends a beacon message to the botmaster,
including the current cell where the UE resides. In the first beacon
message, the bot also sends the UE’s IMSI (International Mobile
Subscriber Identity) and phone number to the botmaster. If there is
no cellular data activity, the bot does not send a beacon message,
which otherwise may interfere with the state of an idle UE. The
bot further proceeds to wait for any command message from the
botmaster, and if there is any, it sends short messages to a list of
phone numbers contained in the message.

The pseudocode of each individual bot is given in Algorithm 1,
in which the Android APIs needed by the bot malware are ex-
plained at its bottom. The APIs used by the bot to detect if there is
any cellular data activity are TrafficStats.getMobileRxBytes() and
TrafficStats.getMobileTxBytes(), which return the number of bytes
received and sent across the mobile networks since device boot,
respectively. We use these two APIs to check whether the total
number of bytes received or sent across the mobile networks in the
last period is 0 (Line 7 in Algorithm 1), and if it is not 0, a beacon
message is sent to the botmaster. It is noted that the transmission
of the beacon message itself should be excluded from the mea-
surement; otherwise, there may be always data transmitted across
the mobile networks in the last period due to the beacon message.
Hence, the size of the beacon message is used to update the counter
for transmitted bytes since device boot (Line 18 in Algorithm 1). It
is possible that the beacon message is sent not across the cellular

network (e.g., over the Wi-Fi network) but the counter is still up-
dated by its size. In that case, the last period can be falsely treated
as idle if there were no data received over the mobile network but
the number of bytes sent by the UE over the cellular network is
exactly equal to the size of the beacon message (i.e., the condition
for not passing the check on Line 7 in Algorithm 1). Such scenarios
are rare and can be ignored for simplicity.

Algorithm 1 Pseudocode for each individual Android bot
1: Call PowerManager.newWakeLock()a to keep the bot running in the back-

ground
2: beacon_id ← 0, old_rx_bytes ← 0, old_tx_bytes ← 0
3: while true do
4: Call Timer()b to schedule a timer that expires after τ time units
5: rx_bytes ← TrafficStats.getMobileRxBytes()c

6: tx_bytes ← TrafficStats.getMobileTxBytes()d
7: if rx_bytes , old_rx_bytes or tx_bytes , old_tx_bytes then
8: old_rx_bytes ← rx_bytes , old_tx_bytes ← tx_bytes ,

msд ← ∅
9: if beacon_id == 0 then
10: imsi ← TelephonyManager.getSubscribeId()e

11: phno ← TelephonyManager.getLine1Number()f
12: msд ←msд ∪ {imsi, phno }
13: end if
14: beacon_id ← beacon_id + 1, bot_id ← sel f
15: cell_id ← UE’s current cell ID
16: msд ← {bot_id, cell_id } ∪msд
17: Create a DatagramPacket formsд and send it to the botmaster
18: old_tx_bytes ← old_tx_bytes + sizeof (msд)
19: end if
20: WAIT:
21: Wait for any command message from the botmaster or for the timer to

expire
22: if there is any command message from the botmaster then
23: old_rx_bytes ← TrafficStats.getMobileRxBytes()
24: old_tx_bytes ← TrafficStats.getMobileTxBytes()
25: for each phone number phno in the command message do
26: Call SmsManager.getDefault().sendTextMessage()g to send a short

message to phno
27: end for
28: go to WAIT
29: else if the timer expires then
30: continue
31: end if
32: end while

aPowerManager.newWakeLock() is called to run malware when the screen of the
mobile device is turned off. Permission WAKE_LOCK is needed.

bTimer() is called for sending periodic beacons. No permission is needed.
cTrafficStats.getMobileRxBytes() returns the number of received bytes through

cellular interface. No permission is needed.
dTrafficStats.getMobileRxBytes() returns the number of sent bytes through cellular

interface. No permission is needed.
eTelephonyManager.getSubscribeId() gets the IMSI of the device. Permission

GET_PHONE_STATE is needed.
fTelephonyManager.getLine1Number() gets the phone number of the device.

Permission GET_PHONE_STATE is needed.
gSmsManager.getDefault().sendTextMessage() is used to send a short message.

Permission SEND_SMS is needed.

Botmaster. The pseudocode of the botmaster is given in Algo-
rithm 2. As shown in Figure 4, it uses a BSM (Bot State Map) to
keep the state of each bot-infected UE. The BSM maps from the
bot ID to a quadruple that represents the corresponding bot’s state,
including the phone number, IMSI, the current cell, and the last
update time. The botmaster keeps listening to the beacon messages
from individual bots. Whenever there is a new beacon message
coming, it updates the state of the corresponding bot with the infor-
mation included in the message and modifies the last update time
to be the current time. The botmaster also periodically reads the

299

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Kaiming Fang and Guanhua Yan

Algorithm 2 Pseudocode for the botmaster
1: BSM ← ∅ ▷ BSM (Bot State Map) is a map from a bot ID to a quadruple,

indexed from 0 to 3.
2: Schedule a timer that expires every τ time units
3: while the timer expires or a new beacon message arrives do
4: t ime ← current time
5: if a new beacon message arrives then
6: Extract bot_id , cell_id , imsi , and phno from the message
7: BSM [bot_id] ← (phno, imsi, cell_id, t ime)
8: else
9: idle_set ← ∅, connected_set ← ∅
10: for every bot_id in BSM .keys() do
11: if t − BSM [bot_id][3] > θ then ▷ Last beacon seen more than θ

time units ago
12: idle_set ← {bot_id } ∪ idle_set
13: else
14: connected_set ← {bot_id } ∪ connected_set
15: end if
16: end for
17: if idle_set and connected_set satisfy paging storm attack condition

then
18: Send a command message to each bot in connected_set , which

includes a partial list of phone numbers associated with the bots in idle_set
19: end if
20: end if
21: end while

BSM and updates two sets, one including those likely to be in an
idle state (idle_set) and the other those likely to be in a connected
state (connected_set). Using these two sets, the botmaster decides
if it needs to command the bots on connected devices to send short
messages to the idle ones.

The botmaster can use the cell information reported by each bot
to decide which cell to be attacked. If a target cell is chosen for
the attack, short messages will be sent to only those devices with
matched cell_id’s in the idle_set . We assume that the botmaster
attacks a target cell only if the number of idle UEs inside the cell
exceeds a certain threshold (e.g., 100 idle UEs). As we do not as-
sume that the botmaster’s machine can send out short messages,
it commands the bots in the connected_set to send short messages
to the UEs in the idle_set . The botmaster can repeat this attack
whenever the attack condition holds.

It is possible that idle_set may include those UEs that have been
powered off or whose cellular services have been tured off because
the bot malware on these devices cannot send beacons to the bot-
master either. A short message delivered to such a UE does not
trigger an immediate paging request because it has been detached
from the network. As the size of idle_set may overestimate the
number of UEs in idle states, the botmaster can adjust threshold θ
upward accordingly to ensure that there are sufficient idle UEs to
cause pulsating paging requests within a short period of time.

5 EMULATION TESTBED
Due to ethical issues we do not evaluate the attack effects of the
Android botnet on an operational LTE network. Instead, we develop
a high-fidelity emulation testbed for this purpose.

5.1 Testbed Components
LTE network emulation.We use OpenAirInterface [8] for LTE
network emulation. OpenAirInterface includes openairinterface5g
to emulate eNodes and UEs, and openair-cn to emulate the EPC.
The master branch of OpenAirInterface lacks three key features

needed to study the effects of paging storm attacks: (1) Handling
of paging requests: a paging request initiated by the MME inside
the EPC is broadcast to all the eNodeBs in the tracking area of the
recipient UE, which further broadcast the paging request at the
appropriate paging occasions. (2) RRC inactivity timer: An eNodeB
has an inactivity timer scheduled for each UE that it is currently
serving at the RRC layer. If there is no data traffic between the
UE and the eNodeB before the timer expires, the eNodeB initiates
an RRC release procedure to release the RRC connection between
the UE and the eNodeB. (3) SMS support: There are two types of
SMS support SMS in LTE: SMS over SGs and SMS over IMS (IP
Multimedia Subsystem).

In our implementation, we ported the first two features from the
develop branches of OpenAirInterface. To support short mes-
sage delivery, we implement the SMS-over-SGs mechanism due to
its simplicity. We created additional entities in openair-cn accord-
ing to the 3GPP specification for SMS over SGs [11].

Android device emulation. The bot malware in the proof-of-
concept Android botnet is implemented as an Android APK, exe-
cuted by the official Android Emulator [1]. The Android Emulator
uses a qemud daemon [9] to manage multiple AVDs (Android Vir-
tual Devices), each allowed to connect to the different services (e.g.,
GPS, sensors, and GSM) through universal interfaces. To support
phone calls and SMS, the GSM service implements a communica-
tion channel through which GSM AT commands are exchanged
between the Android OS and an emulated modem in the AVD. For
example, an AVD uses the AT+CMGS and AT+CMGR command to send
and receive short messages, respectively. To exchange AT com-
mands between the GSM service and the emulated modem, the
Android emulator uses CharPipe, which works like a normal Unix
pipe. We intercept the AT commands inside the Android Emulator
and forward them to the AT command interface of the UE Emula-
tor in openairinterface5g. We hook the CharPipe data structure
from the modem side due to the complexity of functionalities on
the GSM service side. As both the Android Emulator and the UE
Emulator run on the same physical machine in our testbed, we use
a simple UDP socket to communicate the AT commands between
them. Inside the UE Emulator, AT commands received from the
Android Emulator are forwarded to the NAS layer of the UE.

User activity simulator. The idleness of a device hinges upon
its user activity model. As the attack effects are only affected by
infected UEs’ idleness, we use a simple ON/OFF model to simulate
user activities on each emulated Android device. In an OFF state,
the user is assumed to be idle, and in an ON state, it is assumed
that the user sends periodic ping traffic to an external server. The
ON/OFF traffic model is implemented as an Android APK running
along with the bot malware in our testbed. Human dynamics exhibit
heavy tails in various situations [13]. As it has been shown that
the heavy-tailed Pareto distribution can be used to model user data
collected from real-world cellular networks [32], we use it to model
the lengths of both the ON and OFF states in the traffic model.
The heavy-tailed Pareto distribution, F (x) = 1 − (m/x)α , has two
parameters, scale parameterm and shape parameter α .

5.2 Testbed Realism
To ensure that the evaluation results from the testbed should be
realistic, we have considered the following issues.

300

Paging Storm Attacks against 4G/LTE Networks from Regional Android Botnets WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

First, as the mobile bot is executed within the official Android em-
ulator, the software execution overhead experienced by its network
traffic is realistic. In the emulation testbed, the LTE modem is emu-
lated by the network protocol stack of the UE emulator. Although
the software emulation delay may overshoot the processing delay of
the LTE modem in a real mobile phone, it should be much smaller
than the duration of a DRX cycle (0.32 second in our experiments).
Moreover, the shorter processing delays of the LTE modems in real
mobile phones actually help pulsating paging storm attacks. Hence,
using emulated LTE modems may underestimate the attack effects.

Second, in OpenAirInterface the base station and the core net-
work elements are each emulated by separate threads. Across dif-
ferent protocol layers the messages are sent and received using the
intertask interfaces with messages stored in queues. These queues
are implemented based on the liblfds library, whose users include
AT&T, Red Hat and Xen [2]. Hence, the OpenAirInterface LTE net-
work emulator has used production-ready software libraries in its
implementation. Moreover, as all the Android emulators and the
OpenAirInterface LTE network emulator run on a cluster machine
in our emulation testbed (see Section 6), we also use the netem
utility [3] to emulate transmission delays and jitters among these
different components. More specifically, we add 50ms delay and
5ms jitter to packet transmissions by the botmaster machine, 10ms
delay and 1ms jitter to the link between the eNodeB and MME as
well as S/PGW, and 20ms delay and 2ms jitter to the link between
the MME and the SMS center. We choose the transmission delays
at the order of tens of milliseconds based on measurement results
from the real-world AT&T network [4].

Last, we minimize the artifacts in delay measurements in our
testbed due to contention of computational resources. The memory
requirement of each AVD client is significant. We configure each
AVD client to run Android 4.4 (KitKat) with 512 MBytes of RAM. To
reduce CPU and memory usage, we remove the Android emulator’s
Google Apps and SMS notification. It is noted that the maximum
number of concurrent threads that can be executed on our cluster
machine is only 72, which is smaller than the number of bot-infected
devices in our experiments in Section 6. However, both the Android
emulator and the LTE network emulator are event-driven: if no
activity occurs on an emulated Android device or an emulated LTE
network entity, it incurs little computational overhead.

6 EVALUATION
In this section, we first obtain measurements from real LTE net-
works to validate the botnet design and configure the emulation
parameters. We next use the emulation testbed to study the attack
effects. For emulation experiments, we use a cluster machine that
has two Intel Xeon 6140 processors – thus 36 cores with hyper-
threading – and 192GB memory in total with six 32GB DDR4 RAMs.

6.1 Measurements
RRC inactivity timeout. The RRC inactivity timeout value has
prominent impact on the signaling overhead and its setting varies
with each LTE network operator [12]. To infer practical RRC in-
activity timeout values implemented by LTE network operators,
we set up an SDR (Software Defined Radio)-based sniffer modified
from srsLTE [20] to capture the messages destined to a target UE.
On detection of an idle UE, the eNodeB sends an RRC connection

(1) RRC timeout estimation (2) Idleness inference

Figure 5: Measurements from real 4G/LTE networks

release message to the UE. As non-broadcast messages transmitted
at the RRC layer are encrypted, we cannot explicitly filter out the
RRC connection release messages sent to the target UE without
knowing the encryption key. We thus infer its existence by moni-
toring the last message destined to the TMSI (Temporary Mobile
Subscriber Identity) of the target UE because, without any new data
request from or to the target UE, no message interaction should
occur at the RRC layer after the eNodeB sends the RRC connection
release message to the UE. To force the RRC release procedure, we
pull out the SIM card of a smart phone and immediately start a
timer that expires when the SDR-based sniffer captures the last
message destined to its TMSI. When the timer expires, we measure
its duration as an estimate of the RRC inactivity timeout value.

We did experiments for three cellular network operators in our
local area: AT&T, T-mobile and Verizon. As shown in Figure 5(1), the
last control plane message is received after about 14 to 18 seconds
for each of these network operators. Based on this observation, we
configure the RRC timeout value in the emulation experiments to
be 15 seconds; we also assume that the botmaster infers the idleness
of a UE from which it has not received a beacon message for more
than 15 seconds (parameter θ in Algorithm 2).

Idleness inference algorithm.We perform measurements to
evaluate the effectiveness of inferring a UE’s idleness by the bot-
master. The botmaster scans the BSM every 15 seconds. On a real
Android phone connected to the Verizon network, we execute the
bot malware along with the user activity simulator.

Figure 5(2) shows the time at which the user activity simulator
sends a ping packet (1st line), the bot malware sends a beacon
message (2nd line), the botmaster receives the beacon message (3rd
line), and the SDR-based sniffer detects a message destined to the
UE (4th line). In this example, the botmaster detects the UE to be
idle at the time shown as a upward triangle on the 3rd line, and
the sniffer detects the last downlink packet delivered to the UE at
the time shown as a upward triangle on the 4th line. Because the
upward triangle on the 3rd line occurs after the one on the 4th line,
the network should have already released its resources for the UE
when the botmaster infers that the UE is in an idle state.

Size estimation of regional botnets.We use the Town of Los
Alamos in the New Mexico State of US as an example to estimate
the possible size of a regional botnet1. Los Alamos has a population
of 12,019, according to its wikipedia page [52]. It has four cellular
network operators, Sprint, T-Mobile, Verizon, and AT&T; as it has
four cell towers, we can assume that each cellular network operator
has a single tower in Los Alamos [16]. As reported in the GSMA

1Los Alamos is a small isolated town, which makes it easy for botnet size estimation.
We believe that the denser population and thus denser mobile devices in metropolitan
areas should make paging storm attacks even more effective.

301

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Kaiming Fang and Guanhua Yan

(1) Attack effects of botnet size (2) CPU usage and memory footprint (3) Service delay in MME over time

Figure 6: Attack effects of botnet size, CPU and memory overhead, and pulsation of paging requests

Mobile Economy Report, the subscriber penetration rate in North
America is 83%, among which the use rate of 4G technology is 69%
in 2018 [22]. Moreover, the market share of Android in US is 42.75%
in December 2018 according to [27]. Using the average market
share of each cellular network operator in US (T-mobile 14%, Sprint
17%, Verizon 31%, and AT&T 34%) [46] and a normalization factor
of 1.042 (i.e., 1.0 / (0.14 + 0.17 + 0.31 + 0.34)), we can extrapolate
the number of Android users in the Los Alamos area per cellular
network operator: T-mobile 429, Sprint 521, Verizon 951, and AT&T
1042. If we assume that a malware program pretending to be a
localizedmobile application has a penetration rate of 40%, a regional
botnet can have as many as 400 bots. Based on our estimation, we
vary the size of a regional botnet between 100 and 400. To validate
the existence of popular regional mobile apps in the Los Alamos
area, we search keyword “Los Alamos” in Google Play and findmore
than 50 Android apps targeting the town of Los Alamos. The “Los
Alamos Trails” app has had more than a thousand installations [6].

6.2 Emulation experiments

Table 2: Default parameter settings in our experiments

Parameter Meaning Default
T Length of a DRX cycle 32 frames
B Number of paging occasions per frame 1T
R Length of paging record list 7
Ub Number of bot-infected UEs 300
Ul Number of clean UEs 0
(m, α) Pareto distribution parameters (15, 3)

We use the default values in Table 2 to set the parameters in the
experiments. We evaluate the attack effects from a regional botnet
with a few hundred bots sharing the same eNodeB but do not
emulate clean UEs to minimize the computational overhead while
still gaining insights into the attack effects. For simplicity, we use
the same Pareto distribution parameters for both ON and OFF states
in the user activity simulation model, and their mean and standard
deviation are 22.5 and 12 seconds, respectively. The duration of
each emulation experiment is one hour, and the condition to trigger
a new paging storm attack by the botmaster is that the number of
idle bot-infected devices exceeds half of the botnet size.

Baseline case without attack.We measure the attack effects
as both the paging delay in eNB, defined to be the difference between

the receiving time and the serving time of a pagingmessage handled
by the eNodeB, and the service delay in MME, which is the difference
between the time when a paging request is sent by the MME to the
eNodeB and the time when a service request message is received
from the eNodeB by the MME. When there is no botnet attack,
the delays experienced by a normal paging request are measured
as follows: the mean and maximum paging delay in eNB is 172.8
and 412.3 milliseconds, respectively, while the mean and maximum
service delay in MME is 452.3 and 849.6 milliseconds, respectively.

Next we perform a set of experiments to study the attack effects
in different scenarios. In each experiment, the parameters are set as
in Table 2 except the one being varied. When measuring the attack
effects, we only consider those paging or service requests that are
started within 30 seconds after a paging storm attack is launched.

B.1: Effects of botnet size and pulsation of paging requests

Effects of botnet size. Varying the botnet size from 100 to 400,
the attack effects are shown in Figure 6(1). We see that both the
paging delay in eNB and the service delay in MME increase with the
botnet size. With more bots, there is a higher probability of collision
for paging messages at each paging occasion, which postpones the
serving time of the collided paging message. Hence, the emulation
results agree with our mathematical analysis in Section 3.

From a mobile user’s perspective, the attack effect is manifested
by the service delay in MME, because it affects how much time
a legitimate phone or video call can be postponed by the paging
storm attack, let alone the delays that the botnet attack creates at
the other places in the network. From Figure 6(1), we observe that
when the botnet infects 200 UEs, the average service delay in MME
is more than one second while in the worst case the service delay
in MME can be more than five seconds; if the botnet size increases
to 400, the service delay in MME can be more than nine seconds.

CPU and memory usage. To understand how the computa-
tional resource is used, we depict in Figure 6(2) the CPU usage of
each core and the total memory footprint, measured by their means
and standard deviations in the emulation experiments. We observe
that the CPU and memory utilization levels both grow almost lin-
early with the number of bots in the experiments. Even when the
botnet has 400 bots, the mean CPU utilization level is only around
45%, suggesting that resource contention should have little effect
on the delay measurements seen in Figure 6(1).

302

Paging Storm Attacks against 4G/LTE Networks from Regional Android Botnets WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

(1) Parameter B (2) DRX cycle length (3) Record list size

Figure 7: Attack effects of LTE network parameters

Pulsation of paging requests. Figure 6(3) presents the service
delay in MME of each individual paging request in a sample run
lasting one hour. When the botnet size is 400 (300), there are two
(three) paging storm attacks launched by the botmaster, each trig-
gered because there are at least 200 (150) idle bots inferred by the
botmaster algorithm (see Algorithm 2). When the botnet size is
400 (300), among all the service requests started within 30 seconds
after a paging storm attack is launched, 1.63% (0.79%) of them are
delayed by more than 4 seconds, 9.69% (8.91%) by 2 to 4 seconds,
and 41.37% (30.49%) by 1 to 2 seconds. If such attacks are repeatedly
performed, a large number of legitimate calls can be affected.

In our experiments, we measure the attack effects by considering
those service requests started within 30 seconds after a page storm
attack is launched. If we vary the time cutoff among 5, 15, 30, 45,
and 60 seconds for the scenario with 400 bots in Figure 6(3), we get
the average service delay in MME to be 2.41, 2.16, 1.91, 1.85, and 1.80
seconds, respectively. The decreasing service delay suggests that the
impact of a paging storm attack on a later service request decreases
with its starting time, which agrees well with our intuition.

B.2: Effects of LTE network parameters

Effects of parameter B. Parameter B gives the number of pag-
ing occasions in each frame. For example, when B equals T /4, one
paging occasion occurs every four frames; similarly, having B equal
to 2T means each frame has two paging occasions to serve paging
messages. Obviously the larger B is, the larger capacity the eNodeB
has to process paging requests, leading to smaller paging and ser-
vice delays due to fewer collisions among the paging messages. In
our experiments we evaluate four different settings for parameter B:
T /4,T /2,T , and 2T . Figure 7(1) shows how the paging delay in eNB
and the service delay in MME vary with parameter B. We observe
that when B is T /4, the service delay in MME can be as high as
almost eight seconds. A higher value of parameter B increases the
eNodeB’s capacity for delivering the paging requests to UEs per
DRX cycle, thus reducing both the average paging delay in eNB
and the average service delay in MME. Still, we see that the service
delay can be close to five seconds even if B = 2T .

Effects of parameter T . Parameter T decides the duration of
each DRX cycle, which affects the frequency at which a UE wakes
up periodically to receive paging messages in an RRC-IDLE state.
Intuitively, a shorter DRX cycle means that a UE wakes up more
frequently, thus shortening the service time of a paging request
at the cost of higher power consumption. On the other hand, a

larger DRX cycle increases the service time of each paging request
while reducing the UE’s power consumption. In our experiments,
we consider the four typical lengths of DRX cycles according to the
3GPP specifications: 32, 64, 128, and 256 frames.

The experimental results shown in Figure 7(2) confirm our intu-
ition above. Having a longer DRX cycle slows down the delivery
of paging requests to the recipient UEs, thus increasing both the
paging delay in eNB and the service delay in MME. It is noted that
when the length of a DRX cycle is 32 or 64 frames, the maximum
service delay in MME can be close to six seconds, and when each
DRX cycle has 256 frames, the maximum service delay in MME
gets close to twelve seconds. Hence, in LTE networks with long
DRX cycles, a paging storm attack can significantly increase the
call connection setup time.

Effects of parameter R. When multiple paging messages are
hashed to the same paging occasion, they can be delivered in the
same paging record list. Parameter R decides the size of each paging
record list with a maximum value of 16. When the paging record list
is full, paging messages hashed to the same paging occasion have
to be postponed to the next DRX cycle. We consider four different
settings for parameter R: 1, 7, 12, and 16.

Figure 7(3) illustrates the paging delay in eNB and the service
delay in MME under different sizes of paging record lists. When
the paging record list is as short as containing at most one paging
message, the average service delay in MME exceeds two seconds
and its maximum delay exceeds eleven seconds. When we increase
the size of the paging record list, both the average paging delay in
eNB and the average service delay in MME tend to decrease. These
observations agree well with our intuition that a longer paging
record list should allow more paging messages to be delivered at
the same paging occasion, thus reducing the average service time
of each paging request by the network. Still even with R = 16,
the average service delay in MME is close to one second and its
maximum delay is as long as four seconds.

7 DISCUSSIONS
In this section we discuss the practicality of paging storm attacks,
limitations of this work, and potential mitigation schemes.

Attack practicality: In our experiments, a paging storm attack
is launched when at least half of the bots in the botnet are inferred
as idle. When the penetration rate of the bot malware is lower, the
botmaster can use a higher threshold to trigger a new attack. For
example, with a botnet of 150 bots, the botmater can launch a new

303

WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Kaiming Fang and Guanhua Yan

paging storm attack when 130 of the bots are found idle. Moreover,
it is also possible to use other types of LTE-capable devices in a
paging storm attack (e.g., iOS devices and IoT devices).

Using a regional botnet, it is possible to perform other types of
attacks against 4G/LTE networks. For example, bot malware can
make simultaneous service requests to cause pulsating signalling
messages in the network. An idle UE initiating a service request
first establishes an RRC connection with an eNodeB and then makes
a service request to the MME [37]. If the majority of the infected de-
vices are in an idle state, the attack can congest the shared common
control channels used for RRC connection establishment. Similar
to a paging storm attack, such an attack also needs inference about
idleness of UEs and coordination among bot malware to ensure
that bot-generated service requests occur within a short period of
time. Extending our testbed to study the effects of different types
of attacks against cellular networks remains as our future work.

Limitations. The consequences of paging storm attacks are lim-
ited to delaying incoming calls by a few seconds; they are not likely
to cause service disruption of cellular networks nor have signifi-
cant impact on many people’s lives which can tolerate delayed calls.
To further maximize the attack effects, the botmaster can adopt a
salami attack tactic [23, 29] by performing repetitive paging storm
attacks under the radar over a long period of time.

Despite our great efforts on developing the high-fidelity emula-
tion testbed, some factors were ignored. For example, only a single
eNodeB was considered but there may be multiple eNodeBs in the
same area. However, paging storm attacks can still be effective be-
cause paging is performed at the track area level: a paging request
from an MME is sent to all the eNodeBs in the same track area.
Due to limited computational resources, we did not consider any
legitimate paging requests to uninfected mobile phones, but their
existences should magnify the attack effects. A user may power off
her mobile phone, change her phone to an airplane mode, or use
WiFi instead of LTE. We plan to enrich our emulation testbed by
taking these factors into account in our future work.

Mitigation. Potential mitigation schemes against paging storm
attacks include the following. First, the periodic beacon messages
sent by each bot to the botmaster’s machine can be leveraged for
botnet detection. This scheme may however generate some false
alarms. Second, as each bot infers the UE’s idleness by measuring
cellular data activities, we can use a proxy thread on the device
to break its idleness by sending some data over the cellular net-
work. This countermeasure, however, not only wastes power and
increases the cellular data use of the mobile phone but also forces
the cellular network to keep the resources for an actually idle mo-
bile phone. Third, as seen in Figure 7, the cellular network operator
can increase parameter B, reduce the DRX cycle length, or increase
the record list size to mitigate the effects of paging storm attacks.
But there is no free lunch here: increasing B means fewer slots for
other channels not used for paging in a frame, reducing the DRX
cycle length means that each mobile phone has to wake up more
frequently to check paging requests and its battery thus drains
more rapidly, and the record list size can be at most 16 in LTE.

8 RELATEDWORK
This section presents previous works related to vulnerabilities of
4G/LTE networks and attacks on cellular networks.

Vulnerability assessment of 4G/LTE networks. Jover sur-
veyed various attacks against the availability of LTE networks [28].
In another survey Rupprechet et al. discussed the security chal-
lenges of different generations of mobile communication networks
based on their root causes [40]. Shaik et al. demonstrated practical
attacks against several vulnerabilities in the LTE access network
protocol specifications [43]. Tu et al. investigated the vulnerabili-
ties resulting from problematic protocol interactions [51]. Hong et
al. analyzed GUTI (Globally Unique Temporary Indentifier) real-
location data from tens of carriers and found patterns that could
compromise subscribers’ privacy [24]. Rupprecht et al. identified
three attack vectors at the layer two in the LTE network proto-
col stack that may compromise communication confidentiality or
privacy [41]. Hussain et al. proposed to use a combination of sym-
bolic model checking and cryptographic protocol verifier to identify
vulnerabilities in LTE network protocols [25]. Fang and Yan used
reinforcement learning to assist with discovery of vulnerabilities in
LTE networks [19]. Kim et al. developed methods to generate test
cases for assessing the vulnerabilities of the LTE control plane [31].
Hussain et al. found that mobile users’ private information can be
revealed from paging messages via side channel attacks [26].

Large-scale attacks on cellular networks. Enck et al. investi-
gated the security risk of SMS interface to cellular networks and the
feasibility of attacking a cellular network of a national scale with a
medium-sized botnet [18]. Traynor et al. studied the possibility of
using a cellular botnet to overload the HLR (Home Location Regis-
ter) in 2G or 3G networks [49]. Lee et al. proposed to use CUSUM
(cumulative sum) test to detect signaling DoS (Denial of Service)
attacks against 3G networks [34]. Tu et al. analyzed the security
threats caused by IMS-based SMS service in 4G/LTE networks and
performed feasibility study of large-scale attacks [50]. Bassil et al.
proposed a signaling-oriented DoS attacks against LTE networks
by exploiting the numerous signaling exchanges when setting up
a dedicated bearer in an LTE network [14]. Serror et al. has sug-
gested that attacks from the Internet can overload a CDMA2000
cellular network with large amounts of paging messages, leading
to increased delay of cellular call setup requests [42]. Traynor et al.
considered jamming attacks against the Random Access channels
in GSM networks and studied their impact on normal traffic [48].

9 CONCLUSIONS
In this workwe study the attack effects of paging storm attacks from
regional botnets. We implement a proof-of-concept Android botnet
for such attacks. To understand its attack effects, we mathematically
analyze the probability of delaying paging requests and built a high-
fidelity emulation testbed connecting emulated Android devices
and an LTE network emulator. We use measurement results from
real-world LTE networks to validate our botnet design and perform
intensive emulation experiments to shed light on the attack effects
in a practical environment. Our experiments show that paging
storm attacks launched from a regional botnet can delay time-
critical voice/video calls by several seconds.

ACKNOWLEDGMENTS
We acknowledge the Critical Infrastructure Resilience Institute, a
US DHS Center of Excellence, for supporting this work. We also
thank anonymous reviewers for their valuable comments.

304

Paging Storm Attacks against 4G/LTE Networks from Regional Android Botnets WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

REFERENCES
[1] https://developer.android.com/studio/ run/emulator .
[2] https:// liblfds.org.
[3] https://wiki.linuxfoundation.org/networking/netem.
[4] http:// ipnetwork.bgtmo.ip.att.net/pws/network_delay.html.
[5] https://www.callcentrehelper.com/industry-standards-metrics-125584.htm. https:

//www.callcentrehelper.com/ industry-standards-metrics-125584.htm.
[6] Los alamos trails. https://play.google.com/store/apps/details?id=org.pajaritoeec.

losalamostrailsapp.
[7] LTE Quick Reference: SIB(System Information Block) Modification/Notification.

https://www.sharetechnote.com/html/Handbook_LTE_SIB_Modification.html.
[8] OpenAirInterface. http://www.openairinterface.org/.
[9] Qemu. https://www.qemu.org/ .
[10] What causes a delay in delivering sms messages? https://help.nexmo.com/hc/en-

us/articles/204014893-What-Causes-a-Delay-in-Delivering-SMS-Messages- .
[11] 3GPP TS 23.272 V11.9.0. 3rd Generation Partnership Project; Technical Speci-

fication Group Services and System Aspects; Circuit Switched (CS) fallback in
Evolved Packet System (EPS); Stage 2 (Release 11). 2014.

[12] 3GPP TS 36.822 V11.0.0. 3rd Generation Partnership Project; Technical Specifica-
tion Group Radio Access Network; LTE Radio Access Network (RAN) enhance-
ments for diverse data applications (Release 11). 2012.

[13] A.-L. Barabasi. The origin of bursts and heavy tails in human dynamics. Nature,
435(7039):207, 2005.

[14] R. Bassil, A. Chehab, I. Elhajj, and A. Kayssi. Signaling oriented denial of service
on LTE networks. In Proceedings of the 10th ACM international symposium on
Mobility management and wireless access, pages 153–158. ACM, 2012.

[15] Business Insider Intelligence. App localization increases app ROI. https://www.
businessinsider.com/app-localization-increases-app-roi-2016-5, 2016.

[16] Cellreception. Los alamos, nm cell towers & signal map. http://www.cellreception.
com/towers/ towers.php?city=los+alamos&state_abr=nm.

[17] W. Chen, X. Luo, C. Yin, B. Xiao, M. H. Au, and Y. Tang. MUSE: towards robust
and stealthy mobile botnets via multiple message push services. In Australasian
Conference on Information Security and Privacy, pages 20–39. Springer, 2016.

[18] W. Enck, P. Traynor, P. McDaniel, and T. La Porta. Exploiting open functionality
in sms-capable cellular networks. In Proceedings of the 12th ACM conference on
Computer and communications security, pages 393–404. ACM, 2005.

[19] K. Fang and G. Yan. Emulation-instrumented fuzz testing of 4G/LTE android
mobile devices guided by reinforcement learning. In European Symposium on
Research in Computer Security, pages 20–40. Springer, 2018.

[20] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C. Cano, and D. J.
Leith. srsLTE: An open-source platform for LTE evolution and experimentation.
arXiv preprint arXiv:1602.04629, 2016.

[21] GSMA. Network 2020: Mission critical communications. https:
//www.gsma.com/futurenetworks/wp-content/uploads/2017/03/Network_
2020_Mission_critical_communications.pdf .

[22] GSMA. The mobile economy. https://www.gsma.com/r/mobileeconomy/ , 2019.
[23] B. M. Hale. Salami attacks. http://all.net/CID/Attack/papers/Salami2.html. Ac-

cessed in December 2019.
[24] B. Hong, S. Bae, and Y. Kim. GUTI reallocation demystified: Cellular location

tracking with changing temporary identifier. In Proceedings of Symposium on
Network and Distributed System Security. Internet Society, 2018.

[25] S. R. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino. LTEInspector: A sys-
tematic approach for adversarial testing of 4G LTE. Proceedings of the Network
and Distributed System Security Symposium, 2018.

[26] S. R. Hussain, M. Echeverria, O. Chowdhury, N. Li, and E. Bertino. Privacy attacks
to the 4G and 5G cellular paging protocols using side channel information. In
Proceedings of The 26th Network and Distributed System Security Symposium
(NDSS’19), 2019.

[27] S. Ireland. https://ceoworld.biz/2019/01/17/most-popular-mobile-operating-systems-
in-the-united-states-android-vs-ios-market-share-2012-2018/, 2019.

[28] R. P. Jover. Security attacks against the availability of LTE mobility networks:
Overview and research directions. In Wireless Personal Multimedia Communica-
tions (WPMC). IEEE, 2013.

[29] M. Kabay. Salami fraud. Network World Security Newsletter, 24, 2002.
[30] Y.-M. Ke, C.-W. Chen, H.-C. Hsiao, A. Perrig, and V. Sekar. Cicadas: congesting

the internet with coordinated and decentralized pulsating attacks. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communications Security,
pages 699–710. ACM, 2016.

[31] H. Kim, J. Lee, E. Lee, and Y. Kim. Touching the untouchables: Dynamic security
analysis of the LTE control plane. In Proceedings of the IEEE Symposium on
Security and Privacy. IEEE, 2019.

[32] M. Laner, P. Svoboda, S. Schwarz, and M. Rupp. Users in cells: a data traffic
analysis. In Wireless Communications and Networking Conference. IEEE, 2012.

[33] H. Lee, T. Kang, S. Lee, J. Kim, and Y. Kim. Punobot: Mobile botnet using push
notification service in Android. In International workshop on information security
applications, pages 124–137. Springer, 2013.

[34] P. P. Lee, T. Bu, and T. Woo. On the detection of signaling DoS attacks on 3G
wireless networks. In Proceedings of the 26th IEEE International Conference on
Computer Communications. IEEE, 2007.

[35] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, and W. Lee. The core of the mat-
ter: Analyzing malicious traffic in cellular carriers. In Proceedings of Symposium
on Network and Distributed System Security, 2013.

[36] C. Mulliner and J.-P. Seifert. Rise of the ibots: Owning a telco network. In
Proceedings of the International Conference on Malicious and Unwanted Software,
pages 71–80. IEEE, 2010.

[37] M. Olsson, C. Mulligan, S. Sultana, S. Rommer, and L. Frid. EPC and 4G packet
networks: driving the mobile broadband revolution. Academic Press, 2013.

[38] J. Park, D. Nyang, and A. Mohaisen. Timing is almost everything: Realistic
evaluation of the very short intermittent ddos attacks. In 2018 16th Annual
Conference on Privacy, Security and Trust (PST), pages 1–10. IEEE, 2018.

[39] R. Rasti, M. Murthy, N. Weaver, and V. Paxson. Temporal lensing and its appli-
cation in pulsing denial-of-service attacks. In 2015 IEEE Symposium on Security
and Privacy, pages 187–198. IEEE, 2015.

[40] D. Rupprecht, A. Dabrowski, T. Holz, E. Weippl, and C. Pöpper. On security
research towards future mobile network generations. IEEE Communications
Surveys & Tutorials, 20(3):2518–2542.

[41] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper. Breaking LTE on layer two. In
Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 2019.

[42] J. Serror, H. Zang, and J. C. Bolot. Impact of paging channel overloads or attacks
on a cellular network. Proceedings of the 5th ACM workshop on Wireless security,
pages 75–84, 2006.

[43] A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, and J.-P. Seifert. Practical at-
tacks against privacy and availability in 4G/LTE mobile communication systems.
Proceedings of the Network and Distributed System Security Symposium, 2015.

[44] H. Shan, Q. Wang, and Q. Yan. Very short intermittent DDoS attacks in an
unsaturated system. In International Conference on Security and Privacy in Com-
munication Systems, pages 45–66. Springer, 2017.

[45] K. Singh, S. Sangal, N. Jain, P. Traynor, and W. Lee. Evaluating Bluetooth as a
medium for botnet command and control. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer, 2010.

[46] Statista. Wireless subscriptions market share by carrier in the u.s. from 1st quarter
2011 to 3rd quarter 2019. https://www.statista.com/statistics/199359/market-share-
of-wireless-carriers-in-the-us-by-subscriptions/ .

[47] K. Suzuki, D. Tonien, K. Kurosawa, and K. Toyota. Birthday paradox for multi-
collisions. In Information security and cryptology–icisc 2006. Springer, 2006.

[48] P. Traynor, C. Amrutkar, V. Rao, T. Jaeger, P. McDaniel, and T. La Porta. From
mobile phones to responsible devices. Security and Communication Networks,
4(6):719–726, 2011.

[49] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P. McDaniel, and T. La Porta. On
cellular botnets: measuring the impact of malicious devices on a cellular network
core. In ACM conference on Computer and communications security, 2009.

[50] G.-H. Tu, C.-Y. Li, C. Peng, Y. Li, and S. Lu. New security threats caused by
IMS-based SMS service in 4G LTE networks. In Proceedings of the 2016 ACM
Conference on Computer and Communications Security. ACM, 2016.

[51] G.-H. Tu, Y. Li, C. Peng, C.-Y. Li, H. Wang, and S. Lu. Control-plane protocol
interactions in cellular networks. ACM SIGCOMM Computer Communication
Review, 44(4):223–234, 2015.

[52] Wikipedia. Los Alamos, New Mexico. https:// en.wikipedia.org/wiki/Los_Alamos,
_New_Mexico. Accessed in December 2019.

[53] Y. Zeng, K. G. Shin, and X. Hu. Design of SMS commanded-and-controlled and
P2P-structured mobile botnets. In Proceedings of the fifth ACM conference on
Security and Privacy in Wireless and Mobile Networks, pages 137–148. ACM, 2012.

305

https://developer.android.com/studio/run/emulator
https://liblfds.org
https://wiki.linuxfoundation.org/networking/netem
http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html
https://www.callcentrehelper.com/industry-standards-metrics-125584.htm
https://www.callcentrehelper.com/industry-standards-metrics-125584.htm
https://play.google.com/store/apps/details?id=org.pajaritoeec.losalamostrailsapp
https://play.google.com/store/apps/details?id=org.pajaritoeec.losalamostrailsapp
https://www.sharetechnote.com/html/Handbook_LTE_SIB_Modification.html
https://www.qemu.org/
https://help.nexmo.com/hc/en-us/articles/204014893-What-Causes-a-Delay-in-Delivering-SMS-Messages-
https://help.nexmo.com/hc/en-us/articles/204014893-What-Causes-a-Delay-in-Delivering-SMS-Messages-
https://www.businessinsider.com/app-localization-increases-app-roi-2016-5
https://www.businessinsider.com/app-localization-increases-app-roi-2016-5
http://www.cellreception.com/towers/towers.php?city=los+alamos&state_abr=nm
http://www.cellreception.com/towers/towers.php?city=los+alamos&state_abr=nm
https://www.gsma.com/futurenetworks/wp-content/uploads/2017/03/Network_2020_Mission_critical_communications.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2017/03/Network_2020_Mission_critical_communications.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2017/03/Network_2020_Mission_critical_communications.pdf
https://www.gsma.com/r/mobileeconomy/
http://all.net/CID/Attack/papers/Salami2.html
https://www.statista.com/statistics/199359/market-share-of-wireless-carriers-in-the-us-by-subscriptions/
https://www.statista.com/statistics/199359/market-share-of-wireless-carriers-in-the-us-by-subscriptions/
https://en.wikipedia.org/wiki/Los_Alamos,_New_Mexico
https://en.wikipedia.org/wiki/Los_Alamos,_New_Mexico

	Abstract
	1 Introduction
	2 Primer on 4G/LTE networks
	3 Rationale of Paging Storm Attacks
	4 Proof-of-Concept Android Botnet
	4.1 High-level botnet design
	4.2 Technical Challenges
	4.3 Algorithm description of Android botnet

	5 Emulation Testbed
	5.1 Testbed Components
	5.2 Testbed Realism

	6 Evaluation
	6.1 Measurements
	6.2 Emulation experiments

	7 Discussions
	8 Related Work
	9 Conclusions
	References

