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ABSTRACT
Malicious or improper use of drones can pose significant privacy
and security threats in both civilian and military settings. There are
many situations where it requires to detect the presence of a drone
and identify the exact model to be used in applications such as
law enforcement depending on the size and capabilities of different
models. Nonetheless, this remains a challenging task, especially in
low visibility, limited access, or hostile environments. In this paper,
we propose to use acoustic signatures to identify the make and the
model of drones. We achieved 94% accuracy in a closed set scenario
and 80% accuracy in a more challenging open set scenario.
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1 INTRODUCTION
Drones are becoming widely available and are benignly used in
multiple applications such as cinematography, surveying, and legal
goods delivery. Nonetheless, they are also being used for recon-
naissance, invading personal or secure spaces, harming targeted
individuals, smuggling drugs and contraband, or creating public
disturbances. For example, recently, departures at the Heathrow
airport were temporarily suspended after reports of a drone sight-
ing [11]. In another example, a weaponized drone hovered over a
public gathering in Venezuela and dropped explosives targeting
high profile personnel and the general public [12]. As such, identi-
fying drones in different environments to assist the decisions on
whether or not to contain the drone, is a necessity.
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Figure 1: System Architecture.

Multiple works demonstrated the possibility of detecting drones
using various forms of data such as video, RF, thermal imaging,
radar, andWiFi [10]. Several recent works shows that drones can be
also detected using acoustic signals [3, 5, 9]. Also, the early work by
Al-emadi et al. [2] showed the feasibility of acoustics based drone
classification by using two dornes. In contrast to these, we focus on
identifying the drone type among a larger number of drone classes
in realistic open world conditions. Moreover, we demonstrate the
usage of both experimentally collected and online sourced data.

In this paper, we show that the combined acoustic signal primar-
ily generated by the propellers, motor, and the mechanical vibra-
tions of the body has a sufficiently unique signature and can be used
to identify the drone type. Also, we extend the model to incorporate
the capability of deciding whether the incoming sound signal is
from an authorized device by eliminating non-drone sounds.

2 METHODOLOGY
We show the schematic overview of our system architecture in
Figure 1 and describe various steps in the processing pipeline below.
Data collection:We captured the acoustic signals emanating from
the drone sampled at 44.1kHz, using a high-quality directional
microphone (RODE NTG4 shotgun), when the drones are flying
around at 20m above ground and within a 50m radius. This ex-
periment was conducted in a park in 3 sessions over 2 days when
there is not much other activities happening. We collected 3-4 min-
utes of data at each session for 5 classes of drones (Parrot Bebop
2, DJI Mavic Pro, DJI Phantom4 Advanced, DJI Spark, DJI Matrice
100). Also, we used YouTube videos of flying drones to extract the
clear audio of drones flying around and used them to enhance the
data set. There, we extracted audios for 4 drones (Autel EVO, DJI
Inspire2, JME, and DJI MavicAir) using 3 different videos for each
class. These audios were split into three parts; 60% for training and
20% each for validation and test sets. For each class, we allocated a
single audio to be used to get only the testing samples.
Data augmentation: As the operational conditions of the drones
can vary, we augmented the training and validation samples with
amplitude scaling and frequency warping [6]. Each sample is scaled
5 times along in the time axis and in amplitude by two separate
values selected from a uniform distribution, U(0.8, 1.2), that gives a
six fold increment.
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Figure 2: MFCC analysis

MFCC feature extraction: We segmented the signal in to 25ms
frames with 15ms overlap. For each frame, we calculated 26 Mel
Frequency Cepstral Coefficients (MFCCs) that are commonly used
in audio analysis. Next, we aggregated 20 frames each to form win-
dows that will be subsequently used as time steps in our classifier. In
Figure 2 we showMFCCs of two different drone classes to highlight
the differences in spectral characteristics.
LSTM model: We used a Long Short-Term Memory (LSTM) net-
work as our classifier since it has been shown promising results in
audio signal classification tasks [8]. The LSTM architecture we used
consists of 20 time steps, 2 stacked LSTM layers. We used a hidden
state size of 32. At test time, we made predictions for 20 consecutive
windows and calculated the average probability vector. Out of that
we selected the drone class having the highest probability.
Open set data: To extend the ability of the classifier to identify Un-
known classes we added a background class, i.e. Known-Unknowns
(KU), consists of data for; 1) other mechanical sounds such as vehi-
cles; 2) similar acoustic signals such as humming of bees; 3) common
non-mechanical sounds such as human voice, and 4) calm environ-
ment. We experimentally collected data for the calm environment
and scraped audio signals from YouTube videos for the other data
types. To test our model’s performance under Unknown classes, we
used data scraped from [13]. This consists of 13 vehicle sounds and
2 drone sounds that were not used in training. All the data we used
in this work is publicly available at our github repository [1].
Training and testing: We tested two models 1) M1: closed-set
model that contain only the 9 known drone, 2) M2: open-set model
in which the training and validation is done with known and KU
classes and testing with known, KU, and unknown classes.

3 RESULTS
The confusion matrix for the closed-set (M1) prediction is shown
in Figure 3 where the overall accuracy is 94%. Also, the accuracy
of the online scraped dataset is comparable to the experimentally
collected dataset, indicating that drone-specific acoustic signatures
are still preserved even in the processed data available in online
sources. This is an important observation because it is not realistic
to collect acoustic samples from all commercially available drones
through experimentation. Scraping online data allows to expand
the classifier to cover many drones.

With the KU class addition in the open-set model (M2), theDrone
andKU prediction accuracy remained as high as inM1 (92% and 90%
respectively). The Unknown motor vehicle and drone sounds gave
70% accuracy, resulting an overall accuracy of 80%. However, the
Unknown drone sounds were predicted to be as one of the known
Drone classes. On the one hand, this is a desirable result since
it indicates that the classifier can make the drone vs. non-drone
decision accurately. One the other hand, it also indicates that there
is always the possibility of some unknown class being identified
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Figure 3: Normalized confusion matrix (closed-set).
as one of the known drones and further model improvements are
necessary to have much tighter decision boundaries.

4 CONCLUSION AND FUTUREWORK
Our results showed that there are unique ‘AcousticPrints’ associated
with drones and a prediction model can be developed to achieve
high closed-set accuracy. We also demonstrated that the data can
be sourced from online sources without affecting the performance,
which important as it is not practical to collect data from all drone
types in all possible flying scenarios. Finally, with careful selection
of signals to train an additional background class, we showed that
it is possible to enable more realistic open-set predictions.

Our work can be extended in multiple ways. For example, MFCC
filterbank scaling, which is originally designed for voice recogni-
tion, can be modified to better capture the signature variants in
higher frequencies as drones have dominant energy components
in higher frequencies. Also, it is possible to try more advanced
open-set classification techniques to improve the robustness of the
model [4, 7]. Moreover, although we might have addressed Doppler
effect through indirect data augmentation and data collection as we
collected traces of drones flying around freely, further studies are
required to understand the full effect of Doppler effect. Finally, the
effectiveness of a model purely trained from online sourced data to
identify drones in real-time can be evaluated.
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