
iRyP: A Purely Edge-based Visual Privacy-Respecting System for
Mobile Cameras

Yuanyi Sun
Penn State University

University Park, PA 16802, USA
yus160@psu.edu

Shiqing Chen
Penn State University

University Park, PA 16802, USA
u0vv0u@gmail.com

Sencun Zhu
Penn State University

University Park, PA 16802, USA
sxz160@psu.edu

Yu Chen
State University of New York
Binghampton, NY 13902, USA

ychen@binghamton.edu

ABSTRACT
With the growing popularity of mobile devices that have built-in
cameras, capturing images has become a trivial job for ordinary
people, who share the images with their friends or the public online.
However, such digital images are often taken without the consent of
some photographed persons, hence leading to privacy concerns. In
this paper, we propose iRyP, a purely edge-based privacy-respecting
system for mobile cameras. In order to meet the requirements of
efficiency and usability, we propose to piggyback privacy policies
in the advertising messages of Bluetooth Low Energy (BLE), which
has been widely deployed in most mobile devices. As such, pri-
vacy policies of people in a photo view can be delivered timely and
automatically. Moreover, we propose to use a perceptual hashing
algorithm for fast face matching. To improve detection accuracy,
we also design several new techniques for face-related image pro-
cessing. We implement and evaluate a prototype system purely
based on the Android platform. Our experiments show that iRyP
can meet our design requirements and is practical and ready to use.

CCS CONCEPTS
• Security and privacy→ Privacy protections.

KEYWORDS
Mobile cameras, Privacy protection, Face matching, Visual Privacy

ACM Reference Format:
Yuanyi Sun, Shiqing Chen, Sencun Zhu, and Yu Chen. 2020. iRyP : A Purely
Edge-based Visual Privacy-Respecting System for Mobile Cameras . In 13th
ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec ’20), July 8–10, 2020, Linz (Virtual Event), Austria. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3395351.3399341

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8006-5/20/07. . . $15.00
https://doi.org/10.1145/3395351.3399341

1 INTRODUCTION
The ubiquity of smartphones has made taking photos a trivial job
even for people without expertise. Unlike traditional cameras, users
do not need to understand the concept of focus or exposure; the
only rule necessary to remember is to press a button on the phone’s
screen when ready. Because of the easy-to-use features, more and
more people have become used to recording life with mobile (or
wearable) cameras, from public events to individual activities, and
then share them online. This habit is a mainstream trend in our
modern society. However, the “unprocessed” pictures posted online
may violate and impinge upon the privacy expectations of others,
because peoplemay be unwilling to be included in strangers’ photos,
which may be shared online without their consent.

As several user studies [6, 10, 13] indicated, many people do care
about this privacy issue and want to customize their own context-
dependable policies, and an overwhelming majority of surveyed
users stated that they would choose to comply with the privacy
preferences of friends and strangers, as long as doing so would not
interfere with the spontaneity of photo capturing [6].

However, in practice there are lots of challenges to build a mobile
camera system that is privacy-respecting. For example, how do peo-
ple define their privacy policies? how do they share the policies? how
do the mobile cameras get the privacy policies from the surrounding
people? and how to match a human object in the photo with someone
in the surrounding area? how to protect people’s privacy? Motivated
by these problems, in the recent years, especially because of the
advancement on computer vision technology, researchers have pro-
posed various novel systems [6, 8, 9, 14–17, 21, 26, 28]. However,
because of limited application scope, special hardware requirement
or dependence on Internet cloud, the solutions are still not ready
for real-world deployment on mobile cameras.

In this work, we propose a new system named iRyP (acronym for
“I Respect Your Privacy”): a purely edge-based privacy-respecting
system for mobile cameras. In our system, privacy preferences of
the photographed persons would be piggybacked into the advertise-
ment messages of Bluetooth Low Energy (BLE). As such, privacy
policies of people in a photo view can be delivered timely and
automatically. In addition, we adopt the state-of-the-art face de-
tection engines to complete the task of face detection and feature
point extraction, and we employ a perceptual hashing algorithm
for fast face matching. To improve accuracy, we also design several
new techniques for face-related image processing. We implemented

195

https://doi.org/10.1145/3395351.3399341
https://doi.org/10.1145/3395351.3399341


WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Yuanyi Sun, Shiqing Chen, Sencun Zhu, and Yu Chen

and evaluated a prototype system based on the Android platform.
Our experiments in both offline and online settings show that our
system can meet our design requirements and is practical to use.

The contributions of our work are listed below.

• First, iRyP completely runs on commodity mobile devices,
which have relatively weak computation power. Different
from many of the past works, iRyP neither relies on the In-
ternet cloud for image processing and storage, nor require
all users to register to host their personal information. As a
purely edge-based end-to-end solution, it is readily deploy-
able without the complexity and cost of setting up a cloud
service, which also lacks the incentive to any business.

• Second, to improve the accuracy on face matching, we design
a number of efficient techniques, including using multiple
face hashes, face normalization, background reduction, and
face orientation determination.

• Third, by piggybacking privacy profile in BLE advertising
messages, our system provides a user-friendlyway for people
to share their privacy policies.

• Fourth, we design experiments for different scenarios to test
the performance of our system, which shows that our system
has high accuracy and good performance, and it is practical.
We also build a mobile app for real-world deployment of our
system for privacy-preserving photo sharing.

2 PRELIMINARIES
2.1 Bluetooth Low Energy (BLE)
Bluetooth low energy (BLE) [1] is a new generation wireless per-
sonal short-range network technology. Devices with BLE imple-
mented can pair up to communicate with each other. Compared
to classic Bluetooth, the main advantage of BLE is lower power
consumption. BLE is widely used in our daily life. Mobile devices
(iOS, Android, Windows Phone, etc) as well as some laptops already
natively support BLE.

When we turn on BLE, it broadcasts advertising messages (also
called beacon messages) to its surrounding. A nearby BLE-enabled
device can discover it by reading advertising messages. An adver-
tising message is 31-byte long, consisting of a flag part and one or
multiple small AD structures [11]. The flag part takes three bytes.
The first byte represents the length; the second byte is “0x01"; the
third byte represents data. The flag part is a reserved part in any
advertising message. Inside an AD structure, there are three com-
ponents which are length, AD type, and AD data. The length field
takes one byte; the AD type field takes three bytes (e.g., when the
first byte has the value “0xFF", the other two bytes will represent
the company identifier). For the most efficient use of advertising
messages, one may include only one AD structure in the message
(“0xFF" plus a non-used company identifier for iRyP to avoid inter-
fering the existing BlueTooth protocols) In this way, one can get
totally 24 bytes 1 in advertising messages to piggyback one’s own
data without affecting the normal operation of BLE.

131 bytes (Total advertising message length) - 3 bytes (Flag space) - 1 byte (Length) - 1
byte (0xFF) - 2 bytes (Company Identifier) = 24 bytes.

2.2 Perceptual Hash Algorithm (PHash)
A perceptual hash algorithm [3] is an algorithm which generates
a fingerprint for an image (or other type of multimedia file) based
on various features in its content. Unlike cryptographic hash func-
tions, which have the avalanche effect of small changes in the input
leading to drastic changes in the output, perceptual hashing pro-
duces close outputs for two similar images. This feature makes
it attractive for applications such as image searching, copyright
infringement, digital forensics, etc. Next, we describe the details of
pHash [4], one of the most famous perceptual hash algorithms.

• Step 1. Resize a given image to 32x32.
• Step 2. Convert the resized image into gray-scale.
• Step 3. Perform the DCT (Discrete cosine transform) to get
a 32x32 DCT matrix.

• Step 4. Reduce the size of DCT and only keep the top-left
8x8 matrix.

• Step 5. Calculate the average DCT value for the 8x8 matrix.
• Step 6. Calculate the 64-bit hash value. For each value in the
matrix, if equal to or greater than the average, it is set to ‘1’;
otherwise, ‘0’.

From the above steps, one can clearly see it is like a highly
lossy compression algorithm, which gives the robustness to small
changes. Especially, given that the output size is very small (8
bytes), there could be a much higher chance of collisions than cryp-
tographic hash functions. Moreover, the last step makes the process
not reversible, similar to the one-way property in cryptographic
hash functions although weaker. We will see in later sections (Sec-
tion 5) that such properties make our proposed solution safer to
use than user identification methods where a user needs to send his
unique biometric identifier (such as facial biometric) to a stranger
for privacy policy matching. In Section 7, we will present our de-
tailed measurements on how illumination and facial expression
may affect the accuracy of pHash-based facial matching.

2.3 Application Scenarios
In this work, we propose a privacy-respecting camera system named
I Respect Your Privacy (iRyP). There are two types of human actors
in iRyP. One is a camera user, who takes photos. For simplicity, we
refer to this actor as the user with the name Alice. The second type
of actor is a person (or people) in the camera view of Alice, whose
name is Bob. The previous user studies [6, 10, 13] have shown that
most users are willing to follow social norms by making people
aware of recording and process photos accordingly (e.g., blurring
their faces) once being notified of their privacy preferences. This
motivates us the following design principle: giving control back
to people as much as possible. This means that whenever feasible,
recording and sharing decisions should be controlled by the people
in the camera view, while not impeding camera users from using
privacy-respecting camera systems.

In real-world scenarios, however, it is impractical for user (Alice)
to ask each person (Bob) directly about his privacy preference before
photo-taking, especially when Bob is a passerby in the scene and
a stranger to Alice. A fundamental research challenge is: how can
Alice automatically learn the privacy policy of Bob and then enforce
it? Given the time, location and relationship between Alice and
Bob, there might be multiple ways to represent and deliver privacy

196



iRyP : A Purely Edge-based Visual Privacy-Respecting System for Mobile Cameras WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

policies. In this research, leveraging the increasing popularity of
mobile devices, we propose to install the privacy policy in mobile
devices for automatic sharing. For example, Bob can define his
privacy policy (e.g., others must blur his face in a photo) and load it
into his smart watch (or smartphone). The smart watch broadcasts
his policy to the surrounding through BLE. When Alice is taking a
photo, her camera receives Bob’s policy through BLE and tries to
find whether Bob is in the view. If he is, face protection is applied
to his face, according to his privacy policy.

Note that iRyP is incrementally deployable. That is, the iRyP-
enabled camera is able to protect others as long as people’s devices
are able to notify their privacy policies. For other people in the view,
by default iRyP does not protect any face at the photographing time,
but protect strangers’ faces at photo sharing time. We recommend
this default policy considering a tradeoff between visual friendliness
and user privacy. Users can define their own default policies as well.

2.4 Design Goals and Research Challenges
Under the above application scenario, next we discuss several spe-
cific design goals as well as the research challenges.
High Efficiency Compared to PCs, most mobile phones do not
have powerful computing capability. Currently, many high perfor-
mance face detection algorithms are based on deep learning algo-
rithms. However, they require fast CPUs and high-performance
graphics processing units (GPUs), and will not work smoothly in
mobile cameras.
Ease of Use The system on both camera side andmobile device side
should be easy to use. First, the whole process should be automated
and user intervention free. As such, we cannot require BLE pairing
between camera and mobile device for them to communicate, be-
cause pairing between unknown devices is neither automatic nor
safe. Second, for pervasive use and immediate deployment, there
should be no dependence on Internet access or relying on cloud
computing. Existing systems like I-Pic [6] use the Internet cloud
to help process photos and enforce policies. While this has the
advantage of outsourcing expensive operations to the cloud and
negotiating rich privacy policies, it is unclear who will have the
business incentive to provide such a public service, and how to
build and manage the trust among users.
High Accuracy In our system, the camera will need to match a
human object in a photo with human identifiers it received from
others through BLE, and then apply the right privacy policy. If a
face in the photo is matched to a wrong person, it will cause a false
match; on the other hand, if the face is not matched to the right
person, it will cause a false non-match. Clearly, our system should
have a high matching accuracy.
Security and Privacy In our system, a user needs to broadcast
facial identification information and privacy policy to the surround-
ing. Such facial identification information must not contain sen-
sitive information, and must not be misused by others to launch
impersonation attacks against facial biometric based user authenti-
cation or online tracking attacks.

The above design goals motivate us to design a purely edge-
based in-situ privacy-preserving camera system. Note that We do
not consider a malicious photographer who is determined to take
photos of others. Anyway, he or she can easily use spy cameras these

Figure 1: System Architecture of iRyP

days. At this moment, there is no known feasible solution to defeat
that. Our design is motivated by multiple user studies [6, 10, 13]
that indicate most people are willing to respect others’ privacy
preferences, but there is still a lack of practical solutions. Our work
contributes by providing such a possible solution.

3 SYSTEM ARCHITECTURE AND DESIGN
3.1 Architectural Overview
Fig. 1 shows the system architecture of iRyP. It shows how Bob
generates his privacy profile offline (on the right side), and then
uploads it to his mobile device (here a smartwatch). The mobile
device broadcasts Bob’s privacy profile periodically through BLE
advertisements. When Alice takes a picture with Bob in the view,
her device will process the photo and then apply Bob’s privacy
policy (on the left).

Overall, there are six technical modules in iRyP, which fall into
three groups. The first group is to provide a user-friendly mecha-
nism for sharing privacy profiles; the second group provide face-
based human identification, and the third group is about setting
up privacy policy and enforcing policy. Specifically, the first group
contains only one module for profile-sharing via BLE broadcast. In
the second group, Face Detection detects and extracts faces from
a given photo; Face Normalization removes much noise from the
background of a face and restores a face into the vertical position
through rotation; Face Hashing converts a face into a 8-byte hash
value for a front face, and 7 bytes for a left or right face, and a face
hash serves as a face identifier; Face Matching matches faces based
on face hashes. The third group is related to privacy policy. Specifi-
cally, Setting Privacy Policy allows Bob to set up his privacy policy
(e.g., “no photographing”) through an app GUI in his smartphone (or
PC). Bob’s privacy policy and face identifiers are combined into his
privacy profile, which is uploaded to his mobile (e.g., a smartwatch)
and periodically broadcast through BLE beacons. When Alice takes
a photo, her camera device will receive Bob’s privacy profile, and
it will check if Bob is in her photo by matching with Bob’s face
hashes in the received privacy profile. If matched, her camera will
apply Bob’s privacy policy through the Policy Enforcement module.
Next, we describe each group and its modules.

197



WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Yuanyi Sun, Shiqing Chen, Sencun Zhu, and Yu Chen

3.2 Profile-sharing via BLE Broadcast
While there are different ways for smart devices to talk to one
another, BLE is the best choice for iRyP because it is getting ubiq-
uitous these days and is low-energy. For BLE-enabled devices to
communicate data, pairing is the first step, which typically involves
a manual process. Clearly, pairing is not convenient for iRyP be-
cause of two reasons: (1) oftentimes the physical contact time is
short (e.g., passing by), so pairing is a too slow process; (2) Bob,
especially as a passerby, is mostly likely unwilling to be interrupted.
Hence, a challenge here is to design a user-friendly privacy profile
sharing mechanism, which is completely automated and end user
hassle-free.

To address the challenge, first, we will not require pairing be-
tween devices. This is possible because in iRyP only one way com-
munication is needed from Bob’s mobile to Alice’s camera. Indeed,
as long as we are able to embed a privacy profile into BLE beacons,
Alice’s camera will receive Bob’s privacy profile without needing a
follow-up pairing process. From Section 2.1, we already know that
BLE does offer a user customizable field, where users can insert
their own content without affecting the normal BLE protocol and
without introducing extra communication overhead. However, its
maximum space is 24 bytes. That is, we are limited by 24 bytes for
piggybacking profile information, which includes Bob’s identifier
and privacy policy. The identifier will help Alice’s camera accu-
rately identify Bob from her photo. We will see shortly that we may
encode a privacy policy with 2 bytes, so there are only 22 bytes for
us to encode identifiers.

3.3 Face-based Human Identification
An intuitive idea for face identification is through face matching, as
long as Bob’s facial biometrics can be encoded into 22 bytes. Alice’s
camera may extract facial biometrics from each face in the picture
for matching. However, there are a number of challenges. First,
well-known face recognition algorithms typically use a large vector
to represent a face. Second, as facial recognition is increasingly
used in biometric verification, broadcasting Bob’s facial biometrics
would be a great security and privacy risk.

To address the above two challenges, iRyP employs pHash, a
perceptual hash algorithm[3] to compute a 8-byte face hash as
identifier. From Section 2.2, it is clear that pHash has a very high
compression rate. Especially, because human’s faces are similar and
perceptual hashing is designed to be nonsensitive to small changes
of input, it is relatively easy to find collisions in face hashes. For-
tunately, in our application setting, the number of people whose
faces can be detected in a photo is mostly very small, so the chance
of collisions can be well controlled by choosing appropriate thresh-
olds. Note that pHash is not reversible. That is, based on the face
hash of Bob, one cannot reversely construct his face, so the security
and privacy risk of broadcasting face hashes as face identifier is
little. Moreover, due to a good chance of collisions of face hashes in
a relatively large population (e.g., hundreds of people), an attacker
will have high false positives if he uses face hashes as a unique
identifier to track someone else (more security and privacy analysis
in Section 5).

There is another challenge for face identification. Unlike in bio-
metric verification applications, where users are required to face

cameras or pose in a certain way, in our application setting, where
Bob is a passerby, Bob’s face might be captured by others in differ-
ent orientations (front or side view). Therefore, the identification
accuracy would be very low if the face orientation of Bob in the
photo is much different from that used by Bob to build his profile.
Figure 2 shows an example. Here we extract the pHash value from
the front face of a person and uses it as a baseline. For every new
face, we compute its pHash value and measure the hamming dis-
tance between its pHash value and the baseline. The figure shows
that the pHash values of his left face and right face have a very large
hamming distance (≥ 20) from the baseline. This will cause false
non-matches. To address this challenge, in iRyP, Bob will generate
his face-based identifiers with three faces: front face, left face and
right face. With three face identifiers, there will be a higher face
matching probability for Bob. Since we only have 22 bytes in total
for identifiers, we will allocate 8 bytes for front face, 7 bytes for left
face and 7 bytes for right face.

(a) Front face (b) Right face (c) Left face

Figure 2: pHash values of left and right faces have large ham-
ming distances (20 and 27, respectively) from that of front
face.

Given the above high-level idea for face identification, next we
present some details, including face detection, face normalization,
and face matching.
Face Detection: For face identification, the first step is face detec-
tion, which, given a photo, marks out each face in a rectangular
face area. Over the years, many face detection algorithms have
been designed and some of them are very popularly used, such as
OpenCV with HOG cascade [30] or haar cascades [2], and they also
have mobile versions. However, they have difficulty in detecting
side faces from a large distance. Most recent techniques are based
on deep learning algorithms, such as Faster R-CNN [23], and YOLO
[22]. They are superior in detecting faces of different angles from
far away, but require a powerful graphics card. Most mobile devices,
however, do not have such graphics cards.

Not every algorithm can be employed in our setting, because of
the following two considerations. First, as a passerby, Bob’s face
might be captured by others in different angles (front or side view).
Clearly, the face detection algorithm must be good at detecting
side faces. To test side face detection capability, we use a short
video clip, which contains a face turning from left to right. We
extract continuous frames from the video to test two face detection
algorithms. Table 1 shows that when a face is turned over 20 degrees
from the front view, OpenCV with haar cascades cannot detect it
anymore. Second, the face detection algorithm should be able to
detect face landmarks (semantic positions), which are needed for

198



iRyP : A Purely Edge-based Visual Privacy-Respecting System for Mobile Cameras WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Table 1: Face detection result under different turning angles

Turning Angle with Front OpenCV +Haar
Classifier

SeetaFace

Small Angle (Within 20 de-
grees)

Detected Detected

Big Angle (20 to 70 degrees) No Detection Detected

Side Face (70 to 90 degrees) No Detection Detected

Face landmarks No Detection Detected

our face normalization module. Haar classifier does not detect face
landmarks either.

Considering the above requirements, we instead adopt Seetaface [19].
Table 1 shows that Seetaface is good at detecting side faces. In our
experiment, SeetaFace successfully detected all side faces, as shown
in Table. 1. Moreover, it also locates landmarks, such as left and
right eye center, nose tip and mouth center, in the detection process.
We further tested the detection capability of Seetaface at different
distances and camera resolutions, which also showed very good
performance. For example, a face which is over 8 meters (or 12
meters) away can be detected in a 1920x1080 (or 2560x1440) photo.
The time complexity of SeetaFace is also acceptable, as we will
show in the evaluation section.

Finally, we crop every face in the photo and save it as an indi-
vidual image in order to calculate its face hash. These cropped face
images are the input to the next module.
Face Normalization: For face matching, it is important that two
faces are compared in a similar position. Moreover, background
and hair style should not introduce much noise.

CalibratingHeadRotation: When Alice is taking a photo with
Bob in her camera view, the position of Bob’s headmay be rotated in
some degree from the vertical ‘T’ pose (Fig. 3a), either clockwisely
or counter-clockwisely. The rotation would introduce face identifi-
cation errors if not corrected, because pHash is a rotation sensitive
algorithm. Figure 3 shows that the hamming distance from that of
the baseline ‘T’ position increases when keeping rotating the head
position. Especially, when the angle of rotation reaches 10° or above,
the distance would be big enough to cause false non-matches.

(a) The baseline T
Pose Photo.

(b) Rotate by 10°.
Hamming distance
is 7.

(c) Rotate by 25°.
Hamming distance
is 22.

Figure 3: Hamming distance changes when rotating the ‘T’
pose photo

To eliminate the errors caused by head rotation, we use human
eyes and nose as feature points (i.e., landmarks) to calculate the de-
gree of angle the face is rotated clockwisely or counter-clockwisely.
We then rotate the face photo in the reverse direction until two
eyes and nose approximately reach the ‘T’ pose.

BackgroundNoise Reduction: After applying a face detection
algorithm (here Seetaface), we obtain face areas. However, face ar-
eas often include some background and also hair, which are subject
to change. When calculating the hamming distance between two
faces captured in a different time and location, background and hair
are the noise factors, which will introduce errors in face matching.
To address this problem, we use face landmarks to find the center
of a face and then extract a circular face area based on an appro-
priate radius. We only keep the meaningful features like human
eyes, eyebrows, nose, and mouth in our circular face areas for face
matching. More specifically, after extracting face areas, we get a
256x256 square face area. Then we choose 96 pixels as the radius
to get a circular area, as shown in Figure 3.
FaceOrientationDetermination: Figure 2 showed that the pHash
values of Bob’s left and right faces had a very large hamming dis-
tance from that of the baseline. To improve face matching accuracy,
we have proposed to piggyback the pHash values of left, right and
front faces into Bob’s privacy profile. Now the question is: how do
we know the orientation of a face in the photo? Once we correctly
determine whether an extracted face is a left, right or front face,
we can match it with the corresponding one in the privacy profile.
Although some algorithms can calculate face turning angles with
good accuracy, they are relatively expensive in computation. Next,
we propose an efficient algorithm to determine face orientation.

In our face detection process, we have already extracted face
landmarks. In Figure 4, we use green dots to represent the corre-
sponding feature points. We calculate the angle between a vertical
line (red) and the line (blue) going through four green dots on the
bridge of the nose. Note that this angle is different from the actual
face orientation (turning) angle. It serves our purpose because we
are not to determine the exact face orientation angle, but to deter-
mine face orientation (left, right or front). If this angle falls in the
range of −𝜃 to 𝜃 , we treat it as a front face. We treat it as a right
face if below −𝜃 and left face if above 𝜃 . Here, 𝜃 is our threshold,
which may be set differently. Accordingly to our empirical study,
𝜃 = 5° is a good choice. The computation overhead is negligible.

Figure 4: Examples of face orientation determination

FaceMatching:Due to space limit in BLE beacons, we have totally
22 bytes to represent faces. In our system, we use a 8-by-8 matrix

199



WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Yuanyi Sun, Shiqing Chen, Sencun Zhu, and Yu Chen

(8 bytes) to represent a front face and a 8-by-7 matrix (7 bytes) to
represent a left or right profile face. Each cell in a matrix takes 1
bit, so totally 22 bytes (176 bits) is used to represent a person.

After face normalization and orientation determination, wematch
faces in pair, one from the photo and the other from the profile.
Our matching is based on the hamming distance between their
face hashes. When the distance exceeds a threshold, they would be
considered to be from different people. Finally, we return the result
of face matching (yes or no) to the policy enforcement module.

3.4 Generating and Enforcing Privacy Policy
Generating Privacy Policy Currently iRyP supports the follow-
ing common policies.

• Who_List: people allowed to see Bob’s face. Examples are
“none”, “photographer only”, “common friends”, and “all”.

• Where_List: allowed and/or disallowed photo/video sharing
websites. The allowed domains start with ’+’, disallowed do-
mains start with ’-’, empty for nowhere, * for anywhere. For
example, “-youtube.com” indicates no sharing in YouTube.

We encode the above options into 16 bits. The first two bits
encode theWho_List. For example, “00” stands for “none”, which
requires blurring the face before saving the photo into flashmemory.
“01” stands for “photographer only”, which require no sharing with
others online. The rest of 14 bits represent 14 pre-selected popular
photo sharing websites for fine-grained access control, ‘1’ means
allow and ‘0’ disallow. While the space limit does not allow us
to select an arbitrary number of websites, in practice when the
desirable websites are not included, one may combine with the
Who_List to achieve coarse-grained access control. To enable fine-
grained access control, one option is to use a large space to encode
privacy policy information and then split the information into two
or multiple beacon packets. This will require a slight change of our
current protocol.
Policy Enforcement: If a face in Alice’s photo matches with a face
received from Bob via BLE, iRyP will apply Bob’s privacy policy,
for example, blurring his face in the photo if the Who_List bits are
‘00’. Otherwise, it applies the default policy Alice set up based on
her own preference.

Policy regarding photo sharing requires an additional step. For
example, if theWho_List bits are “01”, no blurring will be done with
the photo immediately. Instead, the blurring should happen before
sharing. To implement this idea, for each face in the photo, we write
its position and its associated 2-byte privacy policy into the photo
file. The position of each face is represented by a rectangular region
(i.e., top-left and bottom-right coordinates) in the photo, which was
extracted in the face detection phase. To guarantee the readability of
an augmented photo file, we add a new section to the original photo
file. Take JPEG picture as an example. In a JPEG file, the image part
always ends with bytes “0xFF D9”. When a photo viewer software
reads the picture, it will stop reading when it encounters “0xFF D9”.
Accordingly, we add a new section after “0xFF D9”, which starts
with “0xFF DA” and ends with “0xFF DB”. The space between “0xFF
DA” and “0xFF DB” is used to record privacy policy data. Besides
the above customized method, we may adopt an standard one by
adding the above data as a type of EXIF metadata into the JPEG file
(however, some users may disable EXIF for better privacy).

When Alice wants to share the augmented photo file, she first
loads it into her iRyP client app, which has a GUI for Alice to select
the destination of sharing. Then the app processes each face based
on the sharing destination and the embedded policy, e.g., blurring
Bob’s face in the previous example. Finally, it outputs a policy-
compliant photo, which can be shared by Alice to the destination
site.

In this work, we do not focus on face protection techniques.
Although face blurring is a common solution, we understand it may
cause a photo with blurred face(s) to look weird or ugly. There are
also visual-friendly face denaturing solutions, for example, altering
gender, race, age, and identity in a flexible way [25].

4 IMPLEMENTATION AND EVALUATION
We choose Samsung Galaxy S8 Plus (Android 7.0 Nougat, 4GB RAM)
to implement and deploy our system, and to test the feasibility of
our design. The entire system has around 8 thousand lines of code
(Including C/C++ and Java). Specifically, we import into our project
the Android version of SeetaFace [5], which is a library file. There
is no SSE (Streaming SIMD Extensions) to optimize code for the
mobile platform, which is one reason SeetaFace runs slower in
mobile phones than in PCs.

For vision operations, we choose OpenCV 2.4.9. We import some
libraries, like “libopencv_java.so", from the OpenCV android ver-
sion, and install OpenCV manager on the mobile device. After that,
we can use functions like “resize()" to process images. For BLE
operations, we use the classes and APIs provided by the Android
framework, such as “mBluetoothManager” and “mBluetoothLeAd-
vertiser.startAdvertising()”.

To measure the accuracy of our system, we use the standard
metrics such as false positive, false negative, precision, recall and
F-score. Our evaluation is done in two stages. First, we evaluate the
performance of facial hashing in different conditions. Especially,
we will evaluate the sensitivity of facial hashing to the change of
illumination and facial expression. The results indicate that our
system has very good resistance to such changes, as long as they are
not extreme. (Due to space limit, the detailed results are presented
in Appendix A). Second, we perform an in-lab, large-scale, com-
prehensive evaluation with photos and videos downloaded from
online. We also conduct in-wild evaluations in various settings.

4.1 Evaluation on Orientation Determination
To evaluate the accuracy of face orientation detection, we use a
video clip in which a human’s face turned from left to right in
totally close to 180 degrees. The video clip was broken into 65
continuous frames. Our face orientation determination algorithm
classified these 65 frames into three groups (front, left, and right).
The false positive number was 3, which means 3 frames were classi-
fied into a wrong group. The false negative number was 0, meaning
that faces in all frames were detected and their orientations were
determined. The precision is 95.38% and recall is 100%. All the three
false positives were similar and caused by extremely large turning
angles, where right eyes are invisible.

200



iRyP : A Purely Edge-based Visual Privacy-Respecting System for Mobile Cameras WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Table 2: Unknown people face matching test result (Data-
base group size 10. The letter “F”, “L”, “R” represent front
face, left face and right face, respectively. The number fol-
lowing each letter is the Hamming distance threshold)

True Positive False Positive Precision

F 5 379 0 1.0000

“F” 6 375 4 0.9894

“F” 8 367 12 0.9683

“F” 10 355 24 0.9367

“F” 12 300 79 0.7916

L 5 88 0 1.0000

“L” 6 88 0 1.0000

“L” 8 85 3 0.9659

“L” 10 76 12 0.8636

“L” 12 59 29 0.6705

R 5 83 0 1.0000

“R” 6 81 2 0.9759

“R” 8 78 5 0.9398

“R” 10 68 15 0.8193

“R” 12 50 33 0.6024

4.2 Evaluation on Face Matching
To evaluate face matching accuracy, we first divide people into
two categories, called known people and unknown people. Known
people represent those whose privacy profiles are in the profile
database of camera users (through BLE broadcasting or pre-loaded).
On the contrast, unknown people represent those not using our
system, so their faces do not match with known people. Note that
for a comprehensive and efficient evaluation of face matching ac-
curacy, we will not run our entire system in the wild for hundreds
or thousands of times, which is very time consuming and labor
intensive. Instead, we use an in-house experiment to achieve the
same evaluation purpose.

Specifically, to simulate 10 known people, we download 10 movie
clips, and each of them contains the character’s face (e.g., Keanu
Reeves in “The Matrix Reloaded”, Hyo-joo Han in “The Beauty
Inside”), turning from left to right. The videos are then broken into
continuous frames, as we did before. The frames are then divided
into three sets, based on face orientation and the middle one of each
frame set is selected. In this way, we obtain three frames from each
person and use them as input to our system to construct a privacy
profile for this person. In total, we obtain a group of 30 faces for
these 10 people, and we call it the database group.
Unknown People Face Matching Test In our first test, to sim-
ulate unknown people, we download 550 face photos from the
Internet. They together form a testing group, consisting of 379
front faces, 88 left faces and 83 right faces. This test is to show how
likely a random person (not using iRyP) captured in a photo is able
to match someone in the database group of size 10. When there is

Table 3: Known people face match test result (In first col-
umn, the letter “F”, “L”, “R” represent front face, left face and
right face, respectively. The number following each letter is
theHamming distance threshold. “TP”, “FP”, “FN” represent
true positive, false positive, False Negative)

TP FP FN Precision Recall F-Score

“F” 6 60 0 12 1.0000 0.8333 0.9091

“F” 8 63 0 9 1.0000 0.8750 0.9333

“F” 10 65 0 7 1.0000 0.9028 0.9489

“F” 12 69 42 2 0.6216 0.9718 0.7582

“L” 6 45 0 24 1.0000 0.6522 0.7895

“L” 8 52 5 17 0.9123 0.7536 0.8254

“L” 10 59 20 9 0.7468 0.8676 0.8027

“L” 12 63 89 4 0.4145 0.9403 0.5753

“R” 6 41 2 26 0.9535 0.6119 0.7455

“R” 8 50 15 14 0.7692 0.7813 0.7752

“R” 10 53 40 9 0.5699 0.8548 0.6839

“R” 12 56 113 2 0.3314 0.9655 0.4934

a match, it is a false positive. Table 2 shows that with threshold
hamming distance 5, there is no false positive for all 550 unknown
people. The false positive rates increase with hamming distance
thresholds. When the threshold is 8 or 9, the precisions are around
95%. This is because with a larger threshold, more face hashes are
considered the same, and hence more false matches. Note that,
when the database group size is smaller (e.g., only a few people
nearby the photographer are using iRyP), false matching will be
very unlikely. On the other hand, it can be expected that when the
database group size is larger, the false positive rate could increase
unless we decrease the hamming distance threshold. We consider
group size 10 is a relatively big number in a real world setting.
Known People Face Matching Test Recall that when we con-
struct the original database group, we divided the frames of 10
known people into three sets, based on face orientation, and the
middle one of each frame set is selected as a face identifier. Now we
use all other frames as the testing group, which contains 72 front
face frames, 69 left face frames, and 67 right face frames, in total
208 frames.

Next, we test how accurate our system is to match known people.
For this purpose, wemay directly compare the faces from the testing
group against their profile faces in our database group. In this study,
we however choose to perform a “stress” test, in which we increase
the population of database group by adding a distractor group.
The distractor group includes the left, right, and front faces of 28
additional people. In the end, the database group contains 114 faces
of 38 people. Then we match the testing group (208 frames) against
the new database group of 38 people. When a face is matched to
the right person in the new database group, it is a true positive;
otherwise, if it is matched to a wrong person, it is a false positive.
Note that for some threshold values, it is possible for one face to
match multiple faces of different people. In this case, we count

201



WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Yuanyi Sun, Shiqing Chen, Sencun Zhu, and Yu Chen

Table 4: Average Time Cost

Process Average Time (ms)

One Face Detection 792

Two Faces Detection 928

Three Faces Detection 1057

Four Faces Detection 1178

Five Faces Detection 1304

One Face Feature Extraction 427

Face Normalization Negligible

Face Orientation Determination Negligible

Calculating pHash Negligible

Face Matching Negligible

true positives and false positives separately. That is, there could be
multiple false positives out of one test case. A false negative (false
non-match) happens when there is no matching at all or when
matched to a wrong person.

Table 3 shows that false negatives and precision decreases with
hamming distance threshold. This result is consistent with that
in Table 2. On the other hand, both false positives and recall in-
crease with hamming distance threshold. Clearly, this is a tradeoff
between precision and recall. Based on our testing dataset, it looks
the threshold value of 10 or 11 is good for front faces, 8 is good for
side faces. Overall, false matching is less an issue here, but false
non-matching is harder to eliminate, especially for side faces. This
is not surprising because the turning angles of some faces in our
testing group are very large, which makes it even difficult for users
to identify the faces.

By default, our system adopts a more strict privacy policy when
there are multiple matches in one case. For example, suppose a face
in a photo matches both Bob’s and Charlie’s. Bob’s policy is “no
photographing” and Charlie’s policy is “all people can see my face”,
our system will enforce the more strict privacy policy of the two,
i.e., blurring the face.

4.3 Efficiency
In our system, we adopt SeetaFace as our face detector and our
modified version of perceptual hash algorithm for face matching.
The question is: how efficient and scalable is our system, especially
when there are multiple people in the view?

Wefirst design an experiment to test the performance of SeetaFace
in our phones. We prepare five photos of the same size (1600x400).
The number of faces in them increases from 1 to 5, and each face
has the same size. Then we apply SeetaFace to each photo 100 times
and record the processing time. The test result, in the top 5 rows of
Table 4, shows that the face detection algorithm has the linear time
complexity w.r.t. the number of faces in a photo. On average, each
additional face requires about 130ms to detect.

Next we break down the time cost for different modules in our
system, as shown in Table 4. Besides face detection, another major
source of time cost is face feature extraction with SeetaFace, which

is about 427 milliseconds per face. The time costs of all other mod-
ules, including face normalization, background noise reduction and
face orientation determination, are negligible.

Overall, the performance evaluation show that our system has
good efficiency based on limited computational capability in mobile
phones. Note that on the camera side, we may implement part of the
system as a service, which does photo processing in the background.
In this way, users can keep using their devices during seconds of
processing delay.

4.4 Real-world Testing
To evaluate iRyP in the real world scenarios, we have further pro-
totyped it on Android 7.0 by providing a photographer app and
a bystander app. The photographer app was the main implemen-
tation of iRyP’s core methods, including receiving BLE advertise-
ment messages, taking pictures, face detection, face normalization,
pHash generation, and policy enforcement. The bystander app im-
plemented the privacy profile broadcast feature with the ability to
change the payload of BLE advertisement messages based on the
input of a privacy policy and pHash values. In the deployment, we
used a Samsung Galaxy S8 Plus as the photographer’s device to
capture pictures. Other Android devices, including Samsung Galaxy
S8 Plus and Motorola Nexus 6 were used as the bystanders’ devices
to broadcast privacy profiles.
Dataset: In our test, we asked 14 friends to “act” as the intended
subjects and bystanders to be photographed in different scenarios.
We notified the friends in advance and obtained their consent to
take photos for personal use and would not share them to the public
(including not disclosing their faces in this paper). Specifically, five
friends registered to our system with their privacy profiles – two
deployed the “no photographing" policy and three “photographer
only" (meaning although the photographer can view their faces,
sharing is not allowed). The others were not users of our system,
so we applied default policies.

We used Samsung Galaxy S8 plus to take 100 pictures in different
locations, including classroom, playground, parking lot, lobby, and
hallway, to demonstrate various light conditions and backgrounds.
Scenarios of “acted” bystanders passing by were also included in
this experiment. There were totally 270 faces in the 100 pictures,
and 118 faces belonged to the five registered people. Out of these
118 faces, 52 were front faces, 29 right faces, and 37 left faces.

To test face detection rate and face match accuracy, we use the
Samsung Galaxy S8 Plus to run tests on all the pictures taken.
Before we started the process of face detection, we made sure that
the photographer app received the privacy profile BLE messages
of all the registered people sent from the Android devices running
the bystander apps.

Figure 5 demonstrates two real-world usage cases of our An-
droid app for photographers. Each case shows the screenshots of
three major steps: (1) loading and processing picture in our app;
(2) sharing picture through our app; (3) shared picture seen from
a target app. Some faces have been intentionally masked with a
movie star’s face for protecting their privacy from readers.

Case 1 (the upper row) includes two of our registered people.
The Who_List policy we received from person 𝐴 (second from the
left) is “01", which stands for “photographer only", and the policy
we received from the other person 𝐵 (third from the left) is "00",

202



iRyP : A Purely Edge-based Visual Privacy-Respecting System for Mobile Cameras WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Figure 5: Two sets of screenshots showing the entire process
of using our photographer app for loading and sharing a
photo to a third-party app while enforcing people’s privacy
policies. The upper row is to share a photo to Instagram and
the lower row is to Facebook.

which stands for "none". Accordingly, during photographing, 𝐵’s
face was blurred right away before the picture was saved to the
flash memory. Later on, when we loaded the picture from the flash
memory via our app (the leftmost image of the upper row), 𝐵’s face
was already blurred (other faces were temporarily masked with
the same movie star’s face). When we pressed the “share” button
(the middle image), 𝐴’s face was also blurred to reflect her privacy
policy. In this case, we chose to share the picture over Instagram.
The Instagram sharing page shows that the faces were already
blurred according to their sharing policies.

Case 2(the lower row) shows two people in the foregroundwhose
policies allowed for both sharing and photography. The person who
was a bystander in the picture is shown in the back with his side
face blurred because of his “no sharing no photography” policy.
Upon loading the picture from the flash memory, the bystander’s
face was already blurred. In case 2, we choose to share the picture
over Facebook, which is demonstrated in the rightmost screenshot
with the bystander’s face already blurred.
Face Detection Rate: Out of 100 pictures, 98 pictures had all the
faces detected by the SeetaFace detector on Android at a detector
resizing resolution of 800*600. The two faces that failed to be de-
tected were a face at an extreme angle with only a visible left eye
and a face that was significantly smaller due to far distance. Setting
the resizing resolution to 1200*900 fixed the missed detection of the
smaller face but at a cost of nearly doubling the processing time.

Table 5: Real-world face matching results

Precision Recall F-score

Front 0.9565 0.8462 0.8980

Side 0.9375 0.7143 0.8108

Resizing resolution of 600*450 was also tested, but it did poorly
in detecting all the faces (69 out of 100), and only had a marginal
detection performance boost.
Face Match Rate: According to the outcomes from the previous
Unknown or Known People Face Matching Tests (Section 4.2), we
set the threshold hamming distance to 10 for front faces, and 8
for side faces. Overall, the results of our real-world evaluation
largely confirmed the previous evaluation results with unknown
and known people face matching tests, as shown in Table 5. For
front faces, we found that in certain light conditions, the shades
on the face could make the face look drastically different from the
face used for registration, and this could even be a difficult job
for normal people to recognize. For side faces, we found that the
accuracy was sensitive to face angles. In cases that the face turned
at a much larger angle than the registration faces, it was almost
impossible to match.
Power Usage: The battery consumption for the photographer app
was roughly 1% (i.e., 35 mAh) when processing 8 pictures with 27
faces in total.

For the bystander app, power consumption for sending out BLE
messages depends on the beacon interval. Based on BLE specifica-
tion, the advertising interval can be set to a value between 20ms
and 10.24s. Clearly, there is a trade-off between power consump-
tion and device discovery latency. In fact, we can select from three
different modes, provided by Android APIs. They are low latency,
balance, and low consumption. Considering our application sce-
narios, we choose the balance mode, which sets the interval to
approximately 1000 millisecond. We tested the power consumption
for BLE broadcasting, and the overhead is negligible.

5 DISCUSSIONS
Security and PrivacyAnalysis: In Section 3.3, wementioned that
pHash is not reversible, and it is not a facial biometric. Hence, unlike
a system that shares facial biometric directly for matching, using
pHash will not introduce risks for real-world user authentication.
However, will our scheme enable user location tracking, because
Bob keeps broadcasting his profile?

Certainly, an attacker Trudy can physically follow Bob to eas-
ily continuously track him, e.g., based on any WIFI/BLE beacon
messages (in our case a beacon includes the facial hashes) [7]. This
is not particular to iRyP. Instead, we consider the special scenario
where Trudy wants to track Bob without physically following him.
She may download Bob’s photos online or secretly take a photo of
Bob, and then computes face hashes for Bob. When she is outside,
she uses a device to record all privacy profiles broadcast via BLE
channels from her surrounding (or by collusion someone else does
it and shares the collected privacy profiles with her). Then she tries
to match face hashes to see if Bob is in a certain location. Will this
attack be effective in our system?

203



WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Yuanyi Sun, Shiqing Chen, Sencun Zhu, and Yu Chen

To answer this question, we note that while pHash is effective in
distinguishing Bob from other people in the same view, where the
number of people is often small, it is prone to many collisions in a
large population (in the above attack, it corresponds the number of
people Trudy has encountered over time). Table 6 shows the number
of pairwise collisions among 379 unique faces increases with the
distance threshold 𝑑 . Even with 𝑑 = 5, there are 731 collisions. Note
that one may use a very small 𝑑 (e.g., 𝑑 = 1) to reduce false positives,
but this will introduce high false negatives, because in iRyP Bob
uses a private set of photos to generate his face hashes. As such,
using face hash as a unique identifier for user location tracking will
not be effective.
Improving Matching Accuracy: Since the brightness and con-
trast may introduce pHash distance between faces of the same
person, we may slightly expand the profile generation process to
mitigate the impact. Specifically, Bob may generate two sets of face
identifiers, one based on a relatively darker setting and the other
based on a brighter setting. Depending on the actual brightness
(smart devices often have light sensors to measure the brightness
level of the environment), it may adopt and transmit the proper
face identifiers.

6 RELATEDWORK
Our research is motivated by the findings from a number of user
studies [6, 10, 13], that (1) users mostly like to deal with privacy
issues right after photo capturing to avoid the burdensome of photo
management in a later time; (2) bystanders do expect that recorders
can respect their privacy and first get their consent; (3) the privacy
policies should be customized by people in the view. Next, we
focus the literature review on the technical solutions for privacy
respecting camera systems. As a malicious attacker can easily spy
on others, neither the existing systems nor our system aims to
defeat determined attacks.

Place Avoider [27] relied on visual tags and general patterns to
recognize a space as sensitive. Roesner et al. [24] also proposed
their venue-based solution. The idea is to enable the objects asso-
ciated with sensitive places to “transmit” the pre-defined privacy
policy by advertising messages or using visual labels. In the work
of Wu et al. [29], low-cost sensors embedded in smartphones and
smart watches can be used to discriminate the sensitive space from
others. Bo et al. [8] proposed privacy.tag, a system for preserv-
ing privacy of the subjects in photos. In their system, people use
QR code printed in their T-shirts to express their privacy policies.
Photographer’s Camera scans the QR code to learn people’s pri-
vacy policies. While interesting, this approach is not intuitive or
convenient to deploy. Raval et al.[21] proposed to pick up capture
policies using visual marks. However, the privacy preferences of
human subjects in photos are not the objective of their study. Jung
et al. [17] proposed a method for transmitting privacy policies of
bystanders through infrared technology and recognizing gestures.
This approach however requires extra equipment for users’ camera
devices. He et al. [12] proposed an image perturbation technique to
“encrypt” the sensitive areas in an image, and it supports popular
image transformations. Ilia et al. [14] proposed Face/Off, a new
access control mechanism to prevent the privacy leakages from
photos in social network such as Facebook. Similarly, HideMe [18]

is a plugin to existing photo sharing OSNs for preserving users’
privacy. Different from our work, which is a comprehensive system
for mobile camera and covers both the photo-taking phase and
sharing phase, the above two systems are designed for the sharing
phase only and all processing is done in PCs or in the cloud.

The work most relevant to ours is [6] I-Pic, a system to protect
bystanders’ privacy. In I-Pic, each person (bystander) has an online
agent called bystander agent, which trains a classifier based on
bystander’s photographs. Each camera user has an online agent
called capture agent, which talks to a bystander agent for secure
matching. Unlike our system, the I-pic platform relies on the cloud
computing platform to help match faces, and the camera needs a
GPU to process images. It is not clear who would have the incentive
to provide cloud services for supporting large-scale deployment of
such systems. In our system, we piggyback three face hashes and
the privacy policy into the advertisement messages. Without cloud
support, our system cannot perform many advanced AI and crypto
algorithms. However, it has the advantage of providing purely edge-
based, in-situ privacy protection, which makes it readily deployable.

7 CONCLUSIONS
In this paper, to address the privacy concerns of people who are non-
willingly photographed by others, we presented iRyP, an efficient
privacy-respecting system for mobile devices. We designed several
efficient and effective mechanisms to boost up the accuracy of face
matching based on perceptual hashing algorithm. The biggest ad-
vantage is that it largely reduces the required data for face feature
information while still providing high accuracy. We implemented
an Android-platform based prototype, and performed various ex-
periments. We showed that our system has high usability and good
accuracy. In our future work, we will migrate the advertisement of
policy messages to wearable devices such as smartwatches.

ACKNOWLEDGEMENT
We would like to thank the anonymous reviewers for their help-
ful feedback. This project was in part supported by NSF grant
CNS-1618684. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of any funding agencies.

REFERENCES
[1] [n.d.]. Bluetooth Low Energy. https://en.wikipedia.org/wiki/Bluetooth_Low_

Energy/. Accessed November 26, 2017.
[2] [n.d.]. OpenCV https://opencv.org/ Accessed Nov 12,2017. ([n. d.]).
[3] [n.d.]. Perceptual hashing. https://en.wikipedia.org/wiki/Perceptual_hashing.

Accessed November 26, 2017.
[4] [n.d.]. pHash. https://www.phash.org. Accessed November 26, 2017.
[5] [n.d.]. Seetaface Android. http://blog.csdn.net/wuzuyu365/article/details/

53468631. Accessed November 26, 2017.
[6] Paarijaat Aditya, Rijurekha Sen, Peter Druschel, Seong Joon Oh, Rodrigo Benen-

son, Mario Fritz, Bernt Schiele, Bobby Bhattacharjee, and Tong Tong Wu. 2016.
I-pic: A platform for privacy-compliant image capture. In ACM Mobisys.

[7] Johannes K. Becker, David Li, and David Starobinski. 2019. Tracking Anonymized
Bluetooth Devices. PoPETs 2019, 3 (2019), 50–65. https://doi.org/10.2478/popets-
2019-0036

[8] Cheng Bo, Guobin Shen, Jie Liu, Xiang-Yang Li, YongGuang Zhang, and Feng
Zhao. 2014. Privacy. tag: Privacy concern expressed and respected. In ACM
SenSys.

[9] Loris D’Antoni, Alan M Dunn, Suman Jana, et al. 2013. Operating System Support
for Augmented Reality Applications.. In HotOS.

204

https://en.wikipedia.org/wiki/Bluetooth_Low_Energy/
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy/
https://en.wikipedia.org/wiki/Perceptual_hashing
https://www.phash.org
http://blog.csdn.net/wuzuyu365/article/details/53468631
http://blog.csdn.net/wuzuyu365/article/details/53468631
https://doi.org/10.2478/popets-2019-0036
https://doi.org/10.2478/popets-2019-0036


iRyP : A Purely Edge-based Visual Privacy-Respecting System for Mobile Cameras WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria

Table 6: Number of Pairwise Collision

Distance Threshold 5 6 7 8 9 10 11 12 13

Pairwise Collision Number 731 1384 2415 3805 5621 7766 10447 13605 17091

[10] Tamara Denning, Zakariya Dehlawi, and Tadayoshi Kohno. 2014. In situ with
bystanders of augmented reality glasses: Perspectives on recording and privacy-
mediating technologies. In ACM conference on Human factors in computing sys-
tems.

[11] Bluetooth Special Interest Group. [n.d.]. Specification of the Bluetooth system.
https://www.bluetooth.com/specifications/bluetooth-core-specification. Ac-
cessed November 26, 2017.

[12] Jianping He, Bin Liu, Deguang Kong, Xuan Bao, Na Wang, Hongxia Jin, and
George Kesidis. 2016. PUPPIES: Transformation-Supported Personalized Privacy
Preserving Partial Image Sharing. In 46th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, DSN 2016, Toulouse, France, June 28 -
July 1, 2016. 359–370. https://doi.org/10.1109/DSN.2016.40

[13] Roberto Hoyle, Robert Templeman, Steven Armes, Denise Anthony, David Cran-
dall, and Apu Kapadia. 2014. Privacy behaviors of lifeloggers using wearable
cameras. In ACM UbiComp.

[14] Panagiotis Ilia, Iasonas Polakis, Elias Athanasopoulos, Federico Maggi, and Sotiris
Ioannidis. 2015. Face/off: Preventing privacy leakage from photos in social
networks. In ACM CCS.

[15] Suman Jana, David Molnar, Alexander Moshchuk, Alan M Dunn, Benjamin
Livshits, Helen J Wang, and Eyal Ofek. 2013. Enabling Fine-Grained Permis-
sions for Augmented Reality Applications with Recognizers.. In USENIX Security
Symposium. 415–430.

[16] Suman Jana, Arvind Narayanan, and Vitaly Shmatikov. 2013. A Scanner Darkly:
Protecting user privacy from perceptual applications. In IEEE Symp. on Security
and Privacy.

[17] Jaeyeon Jung and Matthai Philipose. 2014. Courteous glass. In ACM UbiComp.
[18] Fenghua Li, Zhe Sun, Ang Li, Ben Niu, Hui Li, and Guohong Cao. 2019. HideMe:

Privacy-Preserving Photo Sharing on Social Networks. In 2019 IEEE Conference
on Computer Communications, INFOCOM 2019, Paris, France, April 29 - May 2,
2019. 154–162. https://doi.org/10.1109/INFOCOM.2019.8737466

[19] Xin Liu, Meina Kan, Wanglong Wu, Shiguang Shan, and Xilin Chen. 2017.
VIPLFaceNet: an open source deep face recognition SDK. Frontiers of Computer
Science 11, 2 (2017), 208–218.

[20] Patrick Lucey, Jeffrey F Cohn, Takeo Kanade, Jason Saragih, Zara Ambadar, and
IainMatthews. 2010. The extended cohn-kanade dataset (ck+): A complete dataset
for action unit and emotion-specified expression. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition-Workshops. IEEE, 94–101.

[21] Nisarg Raval, Animesh Srivastava, Ali Razeen, Kiron Lebeck, Ashwin Machanava-
jjhala, and Lanodn P Cox. 2016. What youmark is what apps see. InACMMobiSys.

[22] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only
look once: Unified, real-time object detection. In IEEE CVPR.

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems.

[24] Franziska Roesner, David Molnar, Alexander Moshchuk, Tadayoshi Kohno, and
Helen J Wang. 2014. World-driven access control for continuous sensing. In ACM
CCS.

[25] Terence Sim and Li Zhang. [n.d.]. Controllable Face Privacy. In 11th IEEE Inter-
national Conference and Workshops on Automatic Face and Gesture Recognition,
FG 2015, Ljubljana, Slovenia, May 4-8, 2015.

[26] Christopher Smowton, Jacob R Lorch, David Molnar, Stefan Saroiu, and Alec
Wolman. 2014. Zero-effort payments: Design, deployment, and lessons. In ACM
UbiCompu.

[27] Robert Templeman, Mohammed Korayem, David J Crandall, and Apu Kapadia.
2014. PlaceAvoider: Steering First-Person Cameras away from Sensitive Spaces..
In NDSS.

[28] Matthew Turk and Alex Pentland. 1991. Eigenfaces for recognition. Journal of
cognitive neuroscience 3, 1 (1991), 71–86.

[29] Muchen Wu, Parth H Pathak, and Prasant Mohapatra. 2015. Enabling privacy-
preserving first-person cameras using low-power sensors. In IEEE SECON.

[30] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and Shai Avidan. [n.d.]. Fast
human detection using a cascade of histograms of oriented gradients. In Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on.

APPENDIX A
Here we evaluate the sensitivity of facial hashing to the change of
illumination and facial expression. This is because, in reality, the

face images taken for profile generation likely differ from those
taken on-site because of the changes of these factors. While such
changes will also affect the accuracy of other face matching al-
gorithms, here we focus on evaluating their impact on our facial
hashing algorithm, given the input of normalized faces.

7.1 Sensitivity to Illumination
For illumination sensitivity test, we change both the brightness and
the contrast levels of a given face image ( Figure 7a). Specifically, we
use two variables 𝐵 and 𝐶 , initially both set to 1.0 for the original
image and varying between [0.1, 2.0] at the interval of 0.1, to control
the changes of brightness and contrast levels. We use a heatmap to
show the results, as in Figure 6. The columns represent the contrast
levels, and the rows represent the brightness levels. For each cell,
the value represents hamming distance value. Darker blue color
indicates bigger distances, whereas lighter yellow color indicates a
smaller distance.

Figure 6: Heatmap of Hamming Distance under Different
Brightness and Contrast

From the heatmap, we can observe that in most cases, the change
of brightness and contrast levels only introduce a small hamming
distance from the original image. Especially, it is not very sensitive
to darkness (an example in Fig. 7b), but is sensitive in very bright
and high contrast cases (an example in Fig. 7c). The reasons are
as follows. In Step 6 of pHash computation, the binary output for
each pixel (1 or 0) is based on whether the pixel value is above the
average or not. A darker image has a smaller pixel average, but
that does not affect much the polarity of each pixel with respect
to the average. However, when changing to a very bright and high
contrast case, many pixels of the original image would reach the
maximum pixel value of 255 (hence truncated to 255) during the
calculation. This not only introduces high frequency values in the
DCT matrix, but also cause skewness of averages.

205

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://doi.org/10.1109/DSN.2016.40
https://doi.org/10.1109/INFOCOM.2019.8737466


WiSec ’20, July 8–10, 2020, Linz (Virtual Event), Austria Yuanyi Sun, Shiqing Chen, Sencun Zhu, and Yu Chen

(a) The original im-
age under the bright-
ness 1.0 and the con-
trast 1.0

(b) The distance is 0
under the brightness
0.2 and the contrast
0.3

(c) The distance is 14
under the brightness
2.0 and the contrast
2.0

Figure 7: An Example showing how brightness and contrast
affect hamming distance.

Table 7: Expression test classes composition and accuracy

Class Total # Faces # Fails Accuracy
anger 40 0 1.00
disgusted 31 0 1.00
fear 22 7 0.68
happy 48 7 0.85
sadness 42 6 0.86
surprised 34 11 0.68
Total classes 217 31 0.86

7.2 Sensitivity to Facial Expression
To test the sensitivity of facial hashing under different expressions,
we use the CK and CK+ expression dataset [20]. The dataset has
different kinds of expression classes. Take the “happy” class as an
example. It has many groups of continuous photos of a person from
natural expression to smiling or laughing. The CK and CK+ dataset
is very big, so we randomly choose some groups of photos from the
following classes, including anger, disgusted, fear, happy, sadness,
and surprised. As Figure 7 shows, there are totally 217 photos for
testing (anger 40, disgusted 31, fear 22, happy 48, sadness 42, and
surprised 34). For each selected photo, the face is detected and nor-
malized according to our standard procedure, Then for each group
of photos, we choose the first photo as the baseline and compute
the hamming distance between the baseline photo and every other
photo of the group. Here we set 10 or 11 as the threshold distance
for face matching. Figure 7 shows the total number of photos in
each class and the number of fails. The overall accuracy is 0.86,
which indicates the facial hashing is good to match different ex-
pressions at the given threshold value. The main reason for failures
is because of the extreme facial expressions in the database.

Figure 8a and Figure 8b show a successful match in the “happy"
class. The distance is 8, which is mostly caused by the open mouth.
Figure 8c and Figure 8d show another successful match in the
“surprised" class. The distance is 8, which is also mainly because of
the widely opened mouth and raised eyebrows.

The above evaluation on the sensitivity of our facial hashing
shows that with proper thresholds as the hamming distances, facial
hashing indeed exhibits robustness to some degrees of changes of
illumination and expression. In reality, these two factors, together

(a) Baseline 1 (b) Distance from (a): 8

(c) Baseline 2 (d) Distance from (c): 8

Figure 8: Expression test examples

with facial orientation, may jointly contribute to hamming distance,
either by increasing it further or reducing it by mutually canceling
out some effects. As a result, our system will not set a threshold
distance by simply adding up the threshold values of different im-
pacting factors. There is no dataset for a joint evaluation; therefore,
we show the overall performance using real-world testing cases
(Section 4.4), which naturally combine multiple factors together.

APPENDIX B
Offline and In-Situ Policy Generation To use iRyP, users may
generate their privacy profiles offline and share with their family
members and friends in advance. For Alice, she can add their privacy
profiles (i.e., 24 bytes generated from three face photos) into a
local database for future use. In this way, there will be no need for
realtime profile sharing via BLE. For passers-by, since the encounter
may only happen once, there is no need to store their profiles in
Alice’s camera. As such, the profile database will remain very small.

In practice, it may happen that Alice needs to add someone into
her profile database in-situ (or temporally change the privacy policy
of an existing person for special photos, which can be treated the
same way). For example, Alice wants to take a photo of her new
friend Carol, who is not using iRyP. Different from Bob who is
a passerby, here Carol is the intended object for photographing,
although her privacy policy is not in Alice’s camera. In this case,
Alice’s camera may apply a default policy of her selection (e.g.,
“photographing and sharing with common friends”). However, if
Carol prefers Alice to not share his face, Alice can manually change
the privacy policy for Carol in the augmented section of the photo
file through the iRyP client application, as described in Section 3.4.

206


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Bluetooth Low Energy (BLE)
	2.2 Perceptual Hash Algorithm (PHash)
	2.3 Application Scenarios
	2.4 Design Goals and Research Challenges

	3 System Architecture and Design
	3.1 Architectural Overview
	3.2 Profile-sharing via BLE Broadcast
	3.3 Face-based Human Identification
	3.4 Generating and Enforcing Privacy Policy

	4 Implementation and Evaluation
	4.1 Evaluation on Orientation Determination
	4.2 Evaluation on Face Matching
	4.3 Efficiency
	4.4 Real-world Testing

	5 Discussions
	6 Related Work
	7 Conclusions
	References
	7.1 Sensitivity to Illumination
	7.2 Sensitivity to Facial Expression


