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ABSTRACT
Wireless devices resorting to event-triggered communications have
been proved to su�er critical privacy issues, due to the intrinsic
leakage associated with radio-frequency (RF) emissions.

In this paper, we move the attack frontier forward by proposing
BrokenStrokes: an inexpensive, easy to implement, e�cient, and
e�ective attack able to detect the typing of a pre-de�ned keyword
by only eavesdropping the communication channel used by the
wireless keyboard. BrokenStrokes proves itself to be a particularly
dreadful attack: it achieves its goal when the eavesdropping an-
tenna is up to 15 meters from the target keyboard, regardless of
the encryption scheme, the communication protocol, the presence
of radio noise, and the presence of physical obstacles. While we
detail the attack in three current scenarios and discuss its strik-
ing performance—its success probability exceeds 90% in normal
operating conditions—, we also provide some suggestions on how
to mitigate it. The data utilized in this paper have been released
as open-source to allow practitioners, industries, and academia to
verify our claims and use them as a basis for further developments.
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1 INTRODUCTION
Wireless keyboards are becoming more and more popular in homes,
o�ces, and entertainment systems, enabling a smooth, tiny, and ele-
gant interaction with computing devices [1]. Especially in crowded
o�ces, wireless keyboards reduce the number of wires to be man-
aged per working location, with evident advantages in elegance and
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neatness. Besides, they extend the interaction area with terminals,
allowing stress-less and pain-free working experiences [2].

Despite their popularity, wireless keyboards su�er several con�-
dentiality and privacy issues, mainly caused by the broadcast nature
of the wireless communication link and energy constraints [2]. In
fact, compared to legacy wired keyboards, wireless keyboards use
a wireless communication medium, where the information is in-
herently exposed to potential eavesdropping [3]. At the same time,
being powered by batteries, wireless keyboards have to implement
e�cient computation and communication strategies, minimizing
the Radio Frequency (RF) operations to increase the lifetime of the
batteries [4]. From the security perspective, many legacy wireless
keyboards deploy very weak (or none) protection against eaves-
dropping attacks. In the cited context, attacks can be easily achieved
by tuning a malicious receiver at the same operating frequency of
the keyboard [5]. A few researchers [6] also demonstrated the fea-
sibility of active attacks, such as keystroke injection and replay,
capable of poisoning the communication link and reducing the
usability and security of wireless keyboards. While manufacturers
are designing, implementing and delivering more and more secure
solutions for wireless keyboards, the intrinsic security of wireless
keyboards has still to deal with usability and energy constraints [7].
Indeed, wireless keyboards have to trigger a new RF communica-
tion for each new keystroke, to guarantee the minimum typing
delay and maximum usability. At the same time, such RF communi-
cation should last for the minimum amount of time, to minimize
the battery drain and increase the lifetime of the keyboard battery
itself [5].

Contribution. In this paper, we present BrokenStrokes, a novel
attack able to detect the presence of speci�c keywords in arbi-
trarily long keystroke sequences by only eavesdropping the (en-
crypted) keyboard-dongle communication link. The underlying
strategy of BrokenStrokes is based on the identi�cation and acquisi-
tion of Received Signal Strength (RSS) samples associated with the
keystrokes of a target user. Applying ML techniques to the eaves-
dropped encrypted tra�c between the keyboard and the dongle,
BrokenStrokes can enable a variety of attacks, including the identi�-
cation of the number of keystrokes associated with a keyword, as
well as the detection of a speci�c keyword in a stream of keystrokes.
Overall, BrokenStrokes is a very inexpensive and easy-to-perform
attack, requiring only a commercial Software De�ned Radio (SDR)
and an antenna working on the 2.4 GHz frequency band. Moreover,
BrokenStrokes is a completely agnostic attack, being independent
of (i) MAC-layer communication protocol, (ii) packet format, and,
(iii) the adopted encryption layer.

We stress that BrokenStrokes signi�cantly improves keystroke
eavesdropping and analysis compared to the current state of the
art. Indeed, contrary to other related work (see Section 2 for an
overview), BrokenStrokes is e�ective even when no information on
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the MAC-layer protocol is available, in the presence of obstacles,
and up to distances of about 15 meters from the target keyboard.
Besides, despite we show an application of BrokenStrokes in the
area of keyword identi�cation, we remark that the main novel con-
tribution of our work is in the accurate translation between RSS
recordings and keystrokes inter-arrival times. Then, BrokenStrokes
can be easily coupled with any of the well-known keystroke anal-
ysis techniques available in the literature, to provide the desired
objective (password guessing, keyword identi�cation, text analysis,
and so on).

Paper Organization. The remainder of this paper is organized
as follows: Section 2 summarizes recent attacks against keyboards,
while Section 3 illustrates our assumptions and the considered sce-
nario. The intuition behind BrokenStrokes is introduced in Section 4,
while Section 5 describes the methodology to detect a keyword in a
sequence of keystrokes, by exploiting the RSS. The three scenarios
tackled by our contribution are described in Sections 6, 7, and 8,
respectively. Section 9 provides the results of our attack in all the
cited scenarios, while Section 10 provides further details on the
feasibility of BrokenStrokes, as well as some limitations. Finally,
Section 11 tightens conclusions and draws some future work.

2 RELATEDWORK
Keylogging side-channel attacks can be classi�ed as a function of
di�erent parameters [8], including targets (user, keyboard, host
or network), modality (acoustic, wired, WiFi, seismic, motion, EM
radiations), and proximity (close proximity, few meters, or up to 15
meters). In the following, we provide a brief overview of communi-
cation attacks—being BrokenStrokes in the same category.

This class of attacks explores the possibility of reconstructing
the keystrokes typed by target users by extracting information from
the communication channel, be it wired or wireless. Focusing on
the wired setting, an early analysis of keystrokes timing attacks has
been provided by [9]. The authors collected inter-keystroke timings
from Ethernet sessions using the Secure Shell (SSH) protocol, and
inferred on the bigrams typed by the user. The proposed solution
allows to signi�cantly reduce the entropy of passwords transmit-
ted as encrypted via an SSH tunnel. While being characterized by
outstanding performance, this solution requires physical access to
the Ethernet link. Besides, it is suitable only for reducing the com-
plexity of single word instances, such as passwords. In the context
of wireless communication attacks, the authors in [10] described
the limitations of detecting compromised electromagnetic waves
with a wide-band receiver tuned on a speci�c frequency. As a re-
sult, they proposed a new e�ective attack, consisting of acquiring
the raw signal from the antenna and processing the entire elec-
tromagnetic spectrum. Despite being quite an expensive solution,
this side-channel attack can recover 95% of keystrokes on a PS/2
keyboard, from up to 20 meters, and through walls. Similarly, the
authors in [11] introduced a novel attack exploiting WiFi signals,
which correlates the handmovement with text writing.When a user
types a certain key, her �ngers move uniquely, thus generating a
unique pattern in the Channel State Information (CSI). The authors
exploited WiFi signals to perform keystroke recognition by using
two commercial devices: a sender (i.e., a router) and a receiver (i.e.,
a laptop). When evaluated in real-world experiments, the approach

recognizes keystrokes with an accuracy of 93.5%. A similar attack
has been described by the authors in [5], based on the identi�cation
of the changes in the wireless channels related to a keystroke. By
relying on �ve antennas and signal-cancellation techniques, the
proposed solution reaches 91.8% accuracy with full-training and
80% accuracy with reduced training input. Eavesdropping attacks
based on the CSI extracted from wireless signals have emerged
as e�ective strategies and can be delivered without relying on a
training phase [12].

Table 1: Comparing BrokenStrokes with related work.

Ref. MAC Protocol
Agnostic

Long
Range

Robustness to
Obstacles

Reduced
Cost

[9] 3 7 7 3
[10] 3 7 7 7
[11] 7 3 3 3
[5] 7 3 3 3
[12] 7 3 3 3

Our approach 3 3 3 3

As summarized in Table 1, compared to the above valuable ap-
proaches, BrokenStrokes is as a very �exible attack, agnostic respect
to the communication protocol, being e�ective from 20cm up to
15m, and requiring minimal, cost-e�ective equipment.

3 SCENARIO AND ASSUMPTIONS
We consider a general scenario constituted by a wireless keyboard
system, i.e., a keyboard transmittingwirelessly the user’s keystrokes
to a USB dongle connected to a computer. In this scenario, our at-
tack a�ects all the wireless communication protocols that could
be employed to sustain the communication between the keyboard
and the dongle, such as Bluetooth, WiFi, and proprietary proto-
cols. Without loss of generality, we consider three widely adopted
wireless keyboards, as depicted in Table 2. All of the keyboards
feature proprietary communication protocols exploiting the ISM
bandwidth [2.4 � 2.5] GHz for the communication. We stress that
our solution involves neither the hacking nor the reverse engineer-
ing of the protocols adopted by the considered wireless keyboards.
Moreover, we highlight that all the considered keyboards’ brands
implement encryption schemes that prevent direct access to the
content of the exchanged messages.

Table 2: Considered keyboards—Brands and Models.

Brand Model Frequency
range [GHz] Protocol / Security

HP SK-2064 [2.4 � 2.5] Proprietary / Encrypted
Microsoft 850-1455 [2.4 � 2.5] Proprietary / Encrypted
V-MAX K-201 [2.4 � 2.5] Proprietary / Encrypted

Equipment.We adopted a commercial laptop (Dell XPS 15 9560),
featuring a Linux distribution and GNU Radio (a free and open-
source software development toolkit), a commercial SDR [13], and
either an omnidirectional (VERT2450) or a directional antenna
(Aaronia HyperLOG 60350), depending on the considered attack
scenarios. Finally, all the proposed algorithms, techniques, and
procedures adopted throughout this paper have been implemented
in Matlab R2019a.
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Scenario.We performed extensive measurements of the Broken-
Strokes attack in the following reference scenarios:

(1) Scenario 1: Proximity attack.The SDR features a standard
omnidirectional antenna (VERT2450). We placed the SDR in
the close proximity of the keyboard-dongle communication
link—we concealed it under the desk. This attack involves
the adversary having access to the location of the target user
(e.g., o�ce, home), and being able to place the SDR very close
to the wireless keyboard, e.g., under the user’s desk or in its
close proximity.

(2) Scenario 2: Behind-the-wall attack.The SDR is connected
to a directional antenna (Aaronia HyperLOG 60350) and
there is no Line-Of-Sight (LOS) between the antenna and the
keyboard-dongle communication link. This attack considers
an adversary willing to collect the inter-keystrokes timings
of a target user while being behind obstructing objects, such
as walls [14, 15], thus possibly remaining undetected.

(3) Scenario 3: Remote attack. In our setting the SDR is con-
nected to a long-range directional antenna (Aaronia Hyper-
LOG 60350), the adversary is located far away from the target
user, but has a clear LOS to the target and can collect the
inter-keystroke timings from a remote location (up to 15m).

Multiple Users. We considered three di�erent users, namely
{U 1,U 2,U 3}, and we evaluated how the user’s typing pace a�ects
the BrokenStrokes attack. Note that the number of users consid-
ered in this paper is consistent with related works on keystrokes
analysis [16–18].

Noise.We remark that our measurement campaign has been per-
formed in regular o�ce conditions, without any e�ort to reduce the
noise generated by other devices sharing the same communication
frequency of the target keyboards.

Keyword dataset. BrokenStrokes involves a two-stage attack,
i.e., converting the received signal strength peaks to inter-keystroke
timings, and then to keywords. While the vast majority of the liter-
ature focused on translating inter-keystroke timings to keywords
by exploiting di�erent physical layer hacks, we mainly focus on
designing reliable and e�ective solutions to translate the received
signal strength to timings. Without loss of generality, in this paper,
we consider only one keyword, i.e., password, being the second part
of the attack an important, but not strictly novel contribution, to
the current state of the art.

4 BROKENSTROKES IN A NUTSHELL
The computing �ow of BrokenStrokes is composed of: (i) measuring
the Received Signal Strength (RSS) of the messages transmitted
between the keyboard and the dongle; (ii) exploiting such measure-
ments to extract inter-keystroke timings; and, �nally, (iii) resorting
to a Machine Learning (ML) technique to generate a likelihood
score, indicating the presence of a pre-de�ned keyword in the key-
stroke sequence of the target user.

We adopted the MiriadRF LimeSDR to measure the RSS of the
packets generated by each keystroke event [19], and we resort to
GNU Radio to tune the parameters of the SDR [20]. Speci�cally, we
observed that wireless keyboards are idle when no keystrokes are
typed. As soon as the user presses any button, a new transmission

from the keyboard to the dongle is triggered, generating a peak at
a speci�c operating frequency.

We connected the LimeSDR Source (RX) standard module, con-
�gured with a proper operating frequency, a bandwidth of 10 MHz,
and a sample rate of 30 MHz, to a QT GUI Frequency Plot module,
where we enabled the log of the RSS (in dBm) and a timestamp (in
nanoseconds), when the value of the RSS on the particular operating
frequency exceeds a prede�ned threshold value.

The log �le generated by the Acquisition module, containing the
RSS and the timestamps, is subsequently processed by a chain of
Matlab scripts, i.e., Keystroke Timing Extraction and a ML algorithm,
to generate the likelihood score associated with the presence of the
keyword. The Keystroke Timing Extraction block aims at identifying
the keystroke patterns and generating the inter-keystroke timings,
i.e., the time occurring between subsequent keystrokes of the user.
Then, the interarrival times are passed to a ML algorithm, which
provides a likelihood score about the presence of a pre-de�ned
keyword—the ML algorithm has been previously used for training a
model with di�erent repetitions of the same keyword to be detected.
More details of each phase involved in the BrokenStrokes attack will
be provided in the next sections.

5 FROM RSS TO KEYWORD DETECTION
In this section, we show the details of BrokenStrokes, providing
the mechanisms that can be used by an adversary to detect the
presence of a keyword in an arbitrarily long sentence typed by a
user through a wireless keyboard. Without loss of generality, we
consider Scenario 1, i.e., the Proximity attack, while in the later
sections, we will extend our methodology to the other scenarios.

Figure 1 shows the RSS samples collected from the SDR with a
sampling rate of 306 samples per second. We asked U 1 to type 50
times the keyword “password”, andwe collected the RSS estimations
associated with the messages exchanged between the keyboard and
the dongle. We stress that the keyword “password” is not related to
any speci�c user password. Indeed, it represents a generic 8-letters
keyword that, without loss of generality, can be re-conducted to
any keyword typed by the user in an arbitrarily long keystroke
sequence, as detailed in the remainder of this paper.

The RSS samples show a clear pattern, consisting of vertical
bands: one band per word, sinceU 1 was typing a keyword, hitting
return, and then starting again—for a total of 50 repetitions of the
word “password”. The solid red line in Fig. 1 shows the threshold
we used for �ltering RSS samples, i.e., only the samples above
the threshold are considered for the subsequent processing. The
importance of the threshold will be clear later on, when �ltering out
the samples associated with interference while retaining only the
samples coming from the keyboard-dongle communication. Indeed,
we observe that, in this speci�c scenario (Proximity attack), the vast
majority of the samples are mainly concentrated in the range of
[�20,�35] dBm and, therefore, any threshold less than -35dBm can
be adopted for this purpose.

In the following, we extract the inter-keystroke timings via a
dual-stage process: (i) Words Identi�cation; and, (ii) Keystroke Tim-
ings Extraction. The �rst phase exploits RSS samples to identify
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Figure 1: Received Signal Strength (RSS) associated with 50
repetitions of theword “password” by userU 1, assuming Sce-
nario 1 (Proximity a�ack).

the words typed by the target user, while the second phase fo-
cuses on extracting the inter-keystroke timings associated with the
previously identi�ed word.

5.1 Words identi�cation
The top part of Fig. 2 shows the samples collected for the experi-
ment of Fig. 1, where all the RSS values have been normalized to
the same value, being RSS values not relevant for the subsequent
analysis. To extract the timings associated with the beginning of
each word, we considered a sliding window of a pre-determined
duration, and we count for the number of samples belonging to
it (when sliding from the beginning to the end of the trace). The
sliding-window size is important and its con�guration depends on
both the user and the word to be detected. As an example, for the
word “password”, we considered sliding windows of size 2.4, 1.7,
and 2 seconds, for the user U 1, U 2, and U 3, respectively. Moreover,
we empirically assumed a sliding step of 1/50 of the window size.
Finally, in this work, we assume that the sliding-window duration
can be pre-set by the adversary. Indeed, it can properly calibrate
the sliding window by looking at the collected samples, and set
it up accordingly. The bottom part of Fig. 2 shows the number of
samples belonging to the sliding window, given a certain delay (in
milliseconds) from the beginning of the trace. At the same time, the
peaks in the bottom part of Fig. 2 represent the beginning of a new
word. Indeed, if the sliding window duration is properly calibrated,
the number of samples is the highest possible when the window
is at the beginning of the word. Vertical red lines in the top part
of Fig. 2 show the identi�ed peaks in relation to the RSS sample
positions (black circles).

5.2 Keystroke timings extraction
For each of the identi�ed words (vertical red lines in Fig. 2), we per-
formed the following analysis. Firstly, we focused on the samples
collected from a single word, as depicted in the top part of Fig. 3.
We observe that the word “password” is constituted by 9 groups of
samples (8 letters and the carriage return). Each group of samples,
in turn, can be divided into two sub-groups: the �rst set of about 20
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Figure 2: Words identi�cation: we count for the number of
RSS samples belonging to a sliding window (bottom �gure)
and we consider the beginning of the word at the peaks (top
�gure).

samples and the second set of about 5 samples, as depicted in the
bottom part of Fig. 3. We assume that the �rst sub-group belongs to
the information packet transmitted by the keyboard to the dongle,
while the second sub-group belongs to the acknowledgment mes-
sage transmitted by the dongle to the keyboard. Our intuition is that
each keystroke corresponds to one transmission by the keyboard
and the corresponding acknowledgment message by the dongle.
Without loss of generality, in the remainder of this section, we
do not consider any packet loss between the keyboard and the
dongle, consistently with the Scenario 1, where the eavesdropping
equipment is very close to the keyboard-dongle communication
link. Interference will be taken into account in later sections of this
work (for scenarios 2 and 3), as well as strategies to mitigate their
e�ect. To correctly identify the keystroke timings, we adopted a
sliding window duration of 0.024 seconds and a sliding step of 1/50
of the window size. The sliding window duration takes into account
the communication round-trip-delay between the keyboard and
the dongle and, being dependent on the keyboard brand/model,
it requires a pre-processing of the collected samples. The above
parameters have been optimized for the HP SK-2064, while we will
discuss the impact of the keyboard hardware on the performance
of the BrokenStrokes attack in a later section of this paper (Sec. 10).
Finally, by considering the peaks from the previous analysis, we
identi�ed the keystroke timings as depicted by the vertical red lines
in the top part of Fig. 3.

Error bounding.We compare the keystroke timings extracted
by the BrokenStrokes attack with the timings recorded by a standard
keylogger. To this aim, we developed a simple Python script to
record the keystroke timings during the previous measurements
and, subsequently, we compared such a time sequence with the one
collected from the BrokenStrokes attack. We performed the previous
analysis with three di�erent users, i.e.,U 1,U 2 andU 3 as depicted by
Fig. 4. The bottom part of Fig. 4 shows the quantile 0.05 associated
with the inter-keystroke timings collected during 50 repetitions of
the word “password” using the keylogger. In the previous analysis,
we did not take into account the carriage-return keystroke, but only
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Figure 3: Keystroke timings extraction: we count for the
number of RSS samples belonging to the sliding window
(bottom �gure) and we consider the peaks as the timings at
which the keystrokes happen (vertical red lines in the top
�gure).

the timings between two subsequent keystrokes within the word
“password”. We highlight that we considered only the quantile 0.05
of the keystroke interarrival times, since it represents the worst case,
i.e., the keystroke pairs with the 5% smallest time di�erence. The
top part of Fig. 4 shows the absolute value of the di�erence (error)
between the inter-keystroke timings collected by the BrokenStrokes
attack and the ones collected by adopting the keylogger (bottom
part of Fig. 4). For each box, the central mark represents the median,
while the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme
data points not considered outliers, and the outliers are plotted
individually using the red ’+’ symbol. We observe that, even in the
worst-case scenario, the error is always less than 20ms, compared
to an average inter-keystroke timing of 200 ms, computed over the
data collected by the key-logger. To sum up, we highlight that the
median value of the error is about 5ms (for all the users), being the
2% of the quantile 0.05 of the inter-keystroke timings collected by
the keylogger.

User independence. We stress that Words Identi�cation and
Keystroke Timings Extraction are independent of the user, i.e., the
processing performed by the SDR introduces only a minor delay
that does not a�ect the pattern of the inter-keystroke timings. There-
fore, already proposed techniques that a�ect user’s privacy by ex-
ploiting inter-keystroke timings, such as the one in [8] and [9], can
be signi�cantly enhanced by moving the adversary far away from
the target user.

5.3 Keyword detection
Inter-keystroke timings have already been adopted in the literature
to infer on patterns and words typed by a target user [8]. Never-
theless, to the best of our knowledge, no one has proposed so far
to extract inter-keystroke timings from RSS samples. Moreover,
our attack signi�cantly improves the chances of the adversary to
remain undetected during the guessing procedure. Nevertheless,

the combination of the attack peculiarities and the adopted scenar-
ios require a di�erent methodology compared to the ones already
proposed in the literature; in particular, we propose a ML-based
solution that is resilient to both small inter-keystroke timings errors
and interference experienced during the eavesdropping phase.

We considered a Support VectorMachine (SVM) classi�er trained
with only one class (one-class SVM classi�er), i.e., 50 instances of
the word “password”. Our intuition is to discriminate the keyword
“password” from outliers (other words) by resorting to a likelihood
score computed by the SVM classi�er. The keyword detection phase
is performed by the ML module of BrokenStrokes, and consists of
the following three steps:

(1) Training. We trained a one-class SVM model with 50 repli-
cas of the keyword “password”. We adopted a Gaussian ker-
nel function and we standardized the predictor data, i.e., we
centered and scaled each predictor variable by the corre-
sponding weighted column mean and standard deviation;
�nally, we set the expected proportion of outliers in the
training data to 0.05.

(2) Partition of Inter-KeystrokeTimings.The inter-keystroke
timings from the test set are partitioned by using a sliding
window with a step size of one keystroke, i.e., two adjacent
windows overlap over all the elements but one.

(3) Score Index Generation. We test all the partitions using
the trained one-class SVM classi�er obtaining a similarity
score (likelihood) for each partition (sliding window).

To either accept or reject a value as the beginning of the keyword,
we de�ne a Decision Threshold, and the related statistical metrics,
i.e., True Positive (TP), and False Positive (FP).

D���������. Let {s0, . . . , sN } be a set of similarity scores. We
de�ne Decision Threshold (�) as the similarity score value such
that mini (si ) + � represents the minimum value to assume the
keyword as included in the sentence. ⇤

D���������. Wede�neTruePositives (TP) the similarity scores
that exceed � and, at the same time, feature a position (o�set)
consistent with the actual position of the keyword in the current
sentence. ⇤

D���������. Wede�ne False Positives (FP) the similarity scores
that exceed � and that, at the same time, feature a position (o�-
set) not consistent with the actual position of the keyword. We
assume a position as not consistent when its distance from the
actual beginning of the keyword is larger than two keystrokes. ⇤

In the next sections, we consider � = 0 (i.e., we do not consider
the e�ect of �), while in Section 9, we study the performance of
BrokenStrokes for di�erent values of �.

It is worth noting that the above-described procedure does not
require the attacker to know the time the speci�c keyword is typed.
Indeed, the attacker can �rst acquire all the keystrokes, and then
perform the attack.

6 SCENARIO 1: PROXIMITY ATTACK
We estimate the performance of BrokenStrokes in a real-world sce-
nario. We ask user U 1 to repeat 30 times three di�erent sentences:
(i) your password is secret; (ii) the secret of your password; and, (iii)
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Figure 4: Error bound for usersU 1 (a),U 2 (b), andU 3 (c), when comparing inter-keystroke timings from a key-logger (bottom
�gures) with the ones collected by using the BrokenStrokes attack and computing the error (top �gures).

your secret password is mine, being these sentences characterized by
the presence of the keyword at di�erent o�sets from the beginning
of the sentence. We considered Scenario 1 (Proximity attack), and
therefore we placed the eavesdropping equipment very close to the
keyboard-dongle communication link, in a regular o�ce scenario,
with people moving around and several sources of interference, i.e.,
many WiFi networks and Bluetooth devices. Given the proximity
between the SDR and the keyboard-dongle communication link, we
adopted the standard VERT2450 omnidirectional antenna, directly
connected to the SDR. Figure 5 shows the similarity scores provided
by the SVM classi�er as a function of the sliding window o�set.
The sliding window duration has been calibrated on the number
of inter-keystroke timings, i.e., 7, constituting the keyword “pass-
word” while the sliding step is equal to one keystroke. A peak in
the similarity score at a certain o�set means that the subsequent
samples are likely to match with the samples in the training set,
and therefore, the current o�set is likely to be the beginning of
the keyword. We observe that, for all the three sentences, the SVM
classi�er returns higher similarly scores at the o�set where the key-
word “password” begins. Moreover, we observe that BrokenStrokes
can locate the position of the password, while also experiencing a
certain level of uncertainty, i.e., not all the major peaks are located
exactly at the position where the keyword begins. Indeed, recalling
Section 5, interference can either add fake keystrokes or make the
existing ones not retrievable. Overall, this phenomenon just slightly
a�ects the performance of our attack, and the uncertainty of the
keyword position is usually in the range of ±1 keystroke from the
actual position. By reconsidering the results from Fig. 5, we ex-
tracted the maximum score for each sentence and we compared its
position with the one corresponding to the actual position associ-
ated with the beginning of the keyword “password”. Figure 6 shows
the number of occurrences as a function of the error in computing
the expected position of the keyword. We observe that about 31%
of the detection events do not su�er from any error (27 out of 90).
Moreover, we observe that 45% of the detection events are a�ected

by an error of just one keystroke, while a mere 14% of the detection
events occur 2 keystrokes earlier than the real one. Therefore, Bro-
kenStrokes can locate the keyword “password” in 90% of the cases
with an error of fewer than 2 keystrokes. A solid red line in Fig. 6
shows the best �t distribution being a normal distribution with
mean -1.06 and standard deviation of 2.47.

7 SCENARIO 2: KEYWORD DETECTION
FROM BEHIND AWALL

In Scenario 2, we perform the attack in an environment character-
ized by crowded neighboring o�ces, setting up the eavesdropping
equipment in one o�ce and launching the attack from the neighbor-
ing o�ce. The target user was aware of our attack and collaborated
with us when asked to repeat 30 times the same sentence, i.e., you
can choose a random password. The antenna has been placed 4.5
meters away from the target user, while a concrete wall of about
20 cm was obstructing the Line-Of-Sight.

We adopted the same measurement setup and analysis as before,
and we report the similarity scores in Fig. 7 as a function of the
sliding window o�set. We repeated the previous procedure for a
sequence of 30 sentences containing the keyword “password” at the
25th keystroke. We observe that the vast majority of the similarity
score peaks are concentrated at o�sets 24 and 25, i.e., the lag of one
keystroke is mainly due to lost samples during the eavesdropping
phase. Moreover, we highlight the presence of peaks far away from
the expected o�set, i.e., one at 19 and a fewmore in the range from 7
to 13.We consider these peaks as FPs, i.e., the keyword is not present,
but our algorithm still estimated its presence as likely. Nevertheless,
in 19 cases out of 30, the algorithm correctly identi�es the position
of the keyword, while in 10 cases BrokenStrokes provides a (slightly)
wrong position for the keyword.

The number of FPs is mainly due to two factors: (i) the wall
obstructing the Line-Of-Sight a�ects the RSS of the samples trans-
mitted by the keyboard; and, (ii) the o�ce environment is particu-
larly prone to interference. BrokenStrokes is particularly sensitive
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(a) (b) (c)

Figure 5: Keyword detection inside a sentence: we tested the BrokenStrokes attack against three di�erent sentences (repeated
30 times each) by searching for the keyword “password”. Similarity scores are generated by the SVM classi�er and the peaks
represent the likelihood for the beginning of the keyword “password”.
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Figure 6: Frequency of the errors associated with the predic-
tion of the keyword position.

to interference since it exploits RSS estimations to generate the
inter-keystroke timings. We will discuss in detail the strategies to
mitigate the number of FPs in the next sections.

We notice that, despite all the tested sentences contain the key-
word under test password, the very low similarity score levels in
the positions where the keyword is not present indicate the high
robustness of the BrokenStrokes attack to FPs. In fact, there is no
word achieving the same levels of similarity scores as the ones
obtained when the keyword is present.

8 SCENARIO 3: REMOTE ATTACK
In this section, we consider Scenario 3 (Remote Attack), where
the adversary leverages a directional antenna (Aaronia HyperLOG
60350) to perform the BrokenStrokes attack. In this scenario, the
target user sits at the ground �oor of a two �oors villa in Doha,
Qatar, in the proximity of a window. We placed the eavesdropping
antenna at 1, 5, 10, 15, and 20 meters from the keyboard-dongle
communication link. We stress that the link between the directional
antenna and the keyboard-dongle is obstructed by only a window,
and therefore we consider it as a LOS attack.

Figure 7: Behind-the-wall a�ack scenario: BrokenStrokes is
performed against the target keyboard being separated from
the eavesdropping antenna by an o�ce wall.

Figure 8 shows the RSS samples associated with the distances
previously considered. Firstly, we observe that the interference sig-
ni�cantly increases when the eavesdropping antenna moves away
from the target user (black area at the bottom of the �gures). This
e�ect can be explained by observing that the main lobe of the di-
rectional antenna becomes more and more exposed to transmitting
entities that might be located in the neighborhood villas, e.g., WiFi,
Bluetooth, and other interfering sources. Moreover, we observe
that the peaks associated with the actual RSS samples belonging
to the keyboard-dongle communication channel are varying be-
tween -15dBm and -20dBm at 1m and 20m, respectively. Finally,
we calibrated the thresholds (horizontal red lines), by empirically
considering the lowest possible values with minimum interference.

Figure 9 (top) shows the results of our analysis: BrokenStrokes
can identify about 100% of the words up to a distance of 10 me-
ters, while its performance decreases to about 54% and 24% at 15
and 20 meters, respectively. Moreover, Figure 9 (bottom) shows
that BrokenStrokes can successfully retrieve 9 out of 9 keystrokes
(“password” + carriage return) up to 10 meters, while interference
signi�cantly a�ects performance starting at a distance of 15 meters.
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(a) 1 meter (b) 5 meters (c) 10 meters (d) 15 meters (e) 20 meters

Figure 8: Received Signal Strength (RSS) at 1m, 5m, 10m, 15m, and 20m (from left to right) and related thresholds (red lines)
to �lter out the noise.

Nevertheless, we observe that the number of extracted keystrokes
is still high, even at a distance of 20 meters, with a median value of
8 keystrokes identi�ed out of 9.Word Identi�cation and Keystroke
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Figure 9: Word extraction ratio (out of 50 repetitions of
“password”) and number of extracted keystrokes (out of 9),
with increasing distance. Error bars show quantiles 0.05, 0.5,
and 0.95 associated with the number of keystrokes per word
extracted from 50 repetitions of “password”.

Timing Extraction are not enough to detect the presence of the
keyword in the keystrokes of the target user. Therefore, in the fol-
lowing, we apply a ML technique (SVM) to compute the likelihood
(similarity score) of the presence (and position) of the keyword
“password” in a sentence typed by a remote target user, as previ-
ously described in Section 4. Figure 10 shows the similarity scores
generated by the SVM algorithm trained with 10 repetitions of the
keyword “password”. Each similarity score is computed by testing a
sliding window of 7 inter-keystroke timings with a moving step of 1
keystroke. Table 3 shows the number of TPs and FPs (out of 30 sen-
tences) as a function of the eavesdropping distance. BrokenStrokes
can detect the presence and the position of the keyword in the vast
majority of the cases (�73%), i.e., the peaks of the similarity scores
are concentrated at about the same o�set (±1) of the actual position
of the keyword “password”. Moreover, we observe the presence of
a few FPs (23%), i.e., there are minor peaks distributed at di�erent

Table 3: Remote attack scenario: TP Vs FP

Distance (m) TP FP
5 24/30 5/30
10 22/30 7/30
15 24/30 5/30

o�sets of the sentence. A thorough analysis of this phenomenon is
provided in Section 9.

9 BROKENSTROKES PERFORMANCE
In this section, we provide an estimation of the BrokenStrokes at-
tack performance, considering all the three discussed scenarios
altogether. As previously detailed, we trained a statistical learning
algorithm (SVM) with a sequence of 10 repetitions of the keyword
“password”, and we tested such a model on adjacent subsets (sliding
windows) of several sentences. For each test, the SVM algorithm
provides a similarity score (i.e., likelihood) that such a subset of
characters matches the keyword we are looking for. Therefore, each
sentence becomes a vector of similarity scores. In previous sections,
we considered a decision threshold � = 0, while in the following,
we study how � a�ects the performance of BrokenStrokes—we will
vary � in the range [0, . . . , 0.03]. Figure 11 shows the TPs estima-
tions as a function of �. We consider all the major measurements we
already discussed in this paper: (i) Proximity attack (sentence “your
password is secret”); (ii) Behind-The-Wall attack (sentence “you can
choose a random password”); and, (iii) Remote attack at distances
of 5, 10, and 15 meters (sentence “a password has many charac-
ters”), respectively. We didn’t consider 1m and 20m: the former
has performance similar to Scenario 1 (Proximity Attack), while the
latter one is a�ected by too much interference. Firstly, we observe
that the Proximity and Remote attacks are characterized by similar
trends that can be modeled with a straight line with slope -27 and
Y-intercept equal to 0.83648 (solid green line). We also observe that
the worst performance are from the Behind-The-Wall scenario; as
previously discussed, such scenario is the only one deprived of the
LOS, while at the same time su�ering from interference generated
by neighboring devices. Lastly, we highlight that BrokenStrokes can
detect the presence of a keyword in the inter-keystrokes timings
samples of a target user with a frequency of about 80%, indepen-
dently of the considered scenario.
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(a) 5 meters (b) 10 meters (c) 15 meters

Figure 10: Detecting the keyword “password” inside a sentence for Scenario 3 (Remote attack): we tested BrokenStrokes against
the same sentence (repeated 30 times) at three distances, i.e., 5 meters (a), 10 meters (b), and 15 meters (c). Similarity scores are
generated by the SVM classi�er and the peaks represent the likelihood for the beginning of the keyword “password”.
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Figure 11: TPs increasing the Decision Threshold.

Figure 12 shows the FPs estimations as a function of the Deci-
sion Threshold (�). As for the previous case, we consider the: (i)
Proximity attack (sentence: “your password is secret”); (ii) Behind-
The-Wall attack (sentence: “you can choose a random password”);
and, (iii) Remote attack at distances of 5, 10, and 15 meters (sentence:
“a password has many characters”), respectively. Figure 12 con�rms
that the Behind-The-Wall scenario is the least performing: for all
the thresholds, the FPs in this scenario are signi�cantly higher than
the ones in the other scenarios (although being always less than
35%). Conversely, the other scenarios show better performance, be-
ing characterized by some FPs—always less than 25%. The Decision
Threshold (�) value should be chosen to maximize the number of
TPs, while at the same time reducing the number of FPs. Never-
theless, given the results of Fig. 11 and Fig. 12, we observe that �
should be chosen as small as possible (< 5 ·10�3) to experience high
values of TPs, and therefore, low values of missed detection (False
Negative (FN)s). Conversely, the number of FPs can be estimated
as 10% (on average) when � < 5 · 10�3; we deem this values as
an acceptable one, since we can assume one or more additional
layers of post-processing to reduce the number of false alarms, by
exploiting advanced ML techniques—though left for future work,
we highlight the issue in next section. The source data adopted by
this work have been released as open-source at the link [21], to
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Figure 12: FPs increasing the Decision Threshold.

allow practitioners, industries, and academia to verify our claims
and use them as a basis for further development.

10 DISCUSSION
In the following, we discuss the importance of the training set
size, some limitations of BrokenStrokes and, �nally, a few potential
countermeasures to mitigate its impact.

Training set size. The e�ectiveness of BrokenStrokes strongly
relies on the training set previously collected by the adversary. On
the one hand, large training sets might be di�cult to collect in a
reasonable amount of time, and therefore, the attack feasibility is
strictly related to the number of required repetitions of the key-
word to achieve good detection performance. On the other hand,
small training sets can be easily collected by simple social engi-
neering techniques, for instance triggering a response from the
user (i.e., having his typing) via e-mail or social networks, to cite a
few. We studied the performance of the BrokenStrokes attack with
di�erent training set sizes, from 5 to 50 repetitions of the keyword
“password”. We considered the 30 repetitions of the sentence “your
password is secret” from Scenario 1 (Proximity Attack) as our test
set, and we run the BrokenStrokes attack as described in the previous
sections. The optimal size of the training set is 10, guaranteeing the
maximum number of TPs (29) and minimizing the number of FPs
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(1), as depicted in Table 4. The training set size leading to the best

Table 4: TP and FP as a function of the training set size.

Train Set Size
5 10 20 30 40 50

TP 25 29 28 26 26 24
FP 5 1 2 4 4 6

results depends on the keyword and the user typing pace. Thus, a
preliminary phase is required to estimate the optimal training set
size for each keyword-user combination.
Keyboard communication protocol. The vast majority of key-
boards adopt proprietary protocols, like the ones used throughout
this paper. These protocols usually select a frequency and keep it
for a long-term period (up to the switch-o� or battery replacement).
This behavior is particularly prone to the BrokenStrokes attack, since
the attacker can monitor the ISM band, in the range 2.4-2.5 GHz,
identify the frequency adopted by the target user, and select that
target frequency for collecting the RSS samples.

Figure 13 shows the inter-sample timings for the three di�erent
keyboards discussed in Section 3.We distinguish three categories: (i)
Intra-packet samples; (ii) Packet-Ack delay; and, (iii) Inter-keystroke
timings. Intra-packet samples are the RSS estimations belonging to
the same packet, being either the message from the keyboard to the
dongle or the acknowledgment from the dongle to the keyboard.
The second category (Packet-Ack delay) is the time between the
packet and the ack: the keyboard Microsoft 850-1455 seems to have
a very small delay compared to both HP and V-Max. We consider
16ms as the upper bound for the previous category. Finally, Inter-
Keystroke timings represent the time between two consecutive
keystrokes. BrokenStrokes is e�ective if and only if the user’s typing
speed is lower than the Packet-Ack delay. When the user’s typing
speed becomes comparable to the Packet-Ack delay, the current
version of BrokenStrokes is not able to distinguish between the Ack
of a packet and the packet associated with the subsequent keystroke.
We recall that we empirically chose 23ms (Section 5.2) to uniquely
identify the Packet-Ack pattern for the keyboard HP SK-2064.
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Figure 13: Keyboards comparison.

Keyboards adopting Bluetooth, and therefore frequency hopping,
require a larger spectrum observation to capture the RSS samples

of the pseudo-randomly chosen frequencies, thus increasing the
cost of the equipment used to launch our attack. Moreover, some
other keyboard producers (a negligible fraction of, though) adopt
the Direct Sequence Spread Spectrum (DSSS) modulation, which
spreads the information over a wide-band channel, signi�cantly
reducing the transmission peak power and making the communi-
cation almost indistinguishable from the noise �oor.

External interference. The main drawback to BrokenStrokes
is interference. As previously discussed, other devices sharing
the same frequencies of the keyboard-dongle communication link
might signi�cantly a�ect the performance of the attack. We stud-
ied the e�ect of interference, by considering di�erent parameters
(i.e., RSS thresholds), equipment (i.e., directional and omnidirec-
tional antenna), and scenarios (i.e., Proximity, Behind-The-Wall,
and Outdoor). We proved that interference can be mitigated and
BrokenStrokes can guarantee the detection of a keyword with high
chances (more than 70% in the harshest conditions), independently
of the con�guration.

Countermeasures. To mitigate BrokenStrokes, the following
strategies could be implemented: (i) increasing the number of trans-
missions by either beaconing or friendly jamming; (ii) randomly
delaying the keyboard transmissions; or, (iii) adopting DSSS in-
stead of �xed or pseudo-random frequency hopping techniques.
The �rst two strategies might be impractical for wireless keyboards,
since they require more energy, with the second one also possi-
bly a�ecting the user experience. Wireless keyboards are mainly
event-triggered devices and the trade-o� between energy, usability,
and privacy has already been widely investigated [22]. Finally, al-
though DSSS might appear an e�ective strategy, it is more energy-
consuming than frequency hopping [23], leading to consider a
trade-o� between privacy objectives and energy budget.

11 CONCLUSION
In this paper, we have introduced BrokenStrokes, a novel, inexpen-
sive, viable, e�cient, and e�ective attack targeting commercial
wireless keyboards. BrokenStrokes allows to detect the presence of
a pre-de�ned keyword in a stream of user-generated keystrokes,
by just analyzing the wireless tra�c generated by the keyboard.

We studied the e�ectiveness of BrokenStrokes in three di�erent
scenarios, including proximity to the target user, LOSwith distances
spanning between 1 and 15 meters, and non-LOS scenarios (eaves-
dropping from behind a wall in a crowded o�ce environment). All
the scenarios are characterized by remarkable performance even in
the presence of noise (from more than 70% in the harshest condi-
tions to 90%+ in normal operating conditions), con�rming both the
viability and e�ectiveness of the attack. We also highlighted some
limitations, as well as future interesting research directions.
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